Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 98, Issue 1, pp 105–114

Regeneration and plantlet development from somatic tissues of Aristolochia fimbriata

  • Barbara J. Bliss
  • Lena Landherr
  • Claude W. dePamphilis
  • Hong Ma
  • Yi Hu
  • Siela N. Maximova
Original Paper

Abstract

Aristolochia fimbriata is a small herbaceous perennial in the basal angiosperm family Aristolochiaceae. The family contains diverse floral forms ranging from radial to monosymmetric flowers with a wide variety of insect pollinators. Additionally, Aristolochia species contain secondary metabolites that are important natural toxins and traditional medicines, and are critical to the reproduction of swallowtail butterflies. These characteristics, in combination with the small genome size and short life cycle of A. fimbriata, have prompted further development of this species as a model system to study the evolution of basal angiosperms. As a prerequisite for developing a genetic transformation procedure for Aristolochia, we developed protocols for in vitro plant multiplication, shoot organogenesis, rooting, and acclimation of tissue culture-derived plants. Two varieties of Aristolochia were multiplied in vitro and rooted with 100% efficiency. Shoot regeneration was achieved within 1 month of culture initiation from whole leaf, internodal stem, and petiole explants. The highest regeneration success (97%) was recorded for stem explants. Regenerated and rooted shoots were acclimated to greenhouse conditions and developed flowers within 4 weeks of transplanting.

Keywords

Aristolochia fimbriata Basal angiosperm Micropropagation Shoot organogenesis 

References

  1. Abe F, Nagafuji S, Yamauchi T, Okabe H, Maki J, Higo H, Akahane H, Aguilar A, Jimenez-Estrada M, Reyes-Chilpa R (2002) Trypanocidal constituents in plants 1. Evaluation of some Mexican plants for their trypanocidal activity and active constituents in Guaco, roots of Aristolochia taliscana. Biol Pharm Bull 25:1188–1191. doi:10.1248/bpb.25.1188 PubMedCrossRefGoogle Scholar
  2. Abubakar MS, Balogun E, Abdurahman EM, Nok AJ, Shok M, Mohammed A, Garba M (2006) Ethnomedical treatment of poisonous snakebites: plant extract neutralized Naja nigricollis venom. Pharm Biol 44:343–348. doi:10.1080/13880200600746253 CrossRefGoogle Scholar
  3. Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59:125–135. doi:10.1007/s11103-005-2161-y PubMedCrossRefGoogle Scholar
  4. An G, Watson BD, Chiang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305. doi:10.1104/pp.81.1.301 PubMedCrossRefGoogle Scholar
  5. Banziger H, Disney R, Henry L (2006) Scuttle flies (Diptera: Phoridae) imprisoned by Aristolochia baenzigeri (Aristolochiaceae) in Thailand. Mitt Schweiz Entomol Ges 79:29–61Google Scholar
  6. Bell CD, Soltis DE, Soltis PS (2005) The age of the angiosperms: a molecular timescale without a clock. Evol Int J Org Evol 59:1245–1258Google Scholar
  7. Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547. doi:10.1104/pp.124.4.1540 PubMedCrossRefGoogle Scholar
  8. Bharathan G, Lambert G, Galbraith D (1994) Nuclear DNA content of monocotyledons and related taxa. Am J Bot 81:381–386. doi:10.2307/2445466 CrossRefGoogle Scholar
  9. Broussalis AM, Ferraro GE, Martino VS, Pinzon R, Coussio JD, Alvarez JC (1999) Argentine plants as potential source of insecticidal compounds. J Ethnopharmacol 67:219–223. doi:10.1016/S0378-8741(98)00216-5 PubMedCrossRefGoogle Scholar
  10. Dan Y, Yan H, Munyikwa T, Dong J, Zhang Y, Armstrong CL (2006) MicroTom—a high-throughput model transformation system for functional genomics. Plant Cell Rep 25:432–441. doi:10.1007/s00299-005-0084-3 PubMedCrossRefGoogle Scholar
  11. Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555. doi:10.1104/pp.010196 PubMedCrossRefGoogle Scholar
  12. Elizabeth KM, Raju CS (2006) Antimicrobial activity of Aristolochia bracteata. Asian J Chem 18:207–211Google Scholar
  13. Fisher DK, Guiltinan MJ (1995) Rapid, efficient production of homozygous transgenic tobacco plants with Agrobacterium tumefaciens: a seed-to-seed protocol. Plant Mol Biol Rep 13:278–289. doi:10.1007/BF02670906 CrossRefGoogle Scholar
  14. Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SE, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22. doi:10.1104/pp.000653 PubMedCrossRefGoogle Scholar
  15. Gadhi CA, Weber M, Mory F, Benharref A, Lion C, Jana M, Lozniewski A (1999) Antibacterial activity of Aristolochia paucinervis Pomel. J Ethnopharmacol 67:87–92. doi:10.1016/S0378-8741(98)00212-8 PubMedCrossRefGoogle Scholar
  16. Gadhi CA, Benharref A, Jana M, Lozniewski A (2001a) Anti-Helicobacter pylori activity of Aristolochia paucinervis Pomel extracts. J Ethnopharmacol 75:203–205. doi:10.1016/S0378-8741(01)00184-2 PubMedCrossRefGoogle Scholar
  17. Gadhi CA, Hatier R, Mory F, Marchal L, Weber M, Benharref A, Jana M, Lozniewski A (2001b) Bactericidal properties of the chloroform fraction from rhizomes of Aristolochia paucinervis Pomel. J Ethnopharmacol 75:207–212. doi:10.1016/S0378-8741(01)00185-4 PubMedCrossRefGoogle Scholar
  18. Gonzalez F, Stevenson DW (2000) Perianth development and systematics of Aristolochia. Flora 195:370–391Google Scholar
  19. Gupta RS, Dobhal MP, Dixit VP (1996) Morphometric and biochemical changes in testes of Presbytis entellus entellus Dufresne (Langur monkey) following aristolochic acid administration. Ann Biol Ludhiana 12:328–334Google Scholar
  20. Hall DW, Brown BV (1993) Pollination of Aristolochia littoralis (Aristolochiales: Aristolochiaceae) by males of Megaselia spp. (Diptera: Phoridae). Ann Entomol Soc Am 86:609–613Google Scholar
  21. Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496. doi:10.1111/j.1365-313X.1992.00487.x CrossRefGoogle Scholar
  22. Hinou J, Demetzos C, Harvala C, Roussakis C (1990) Cytotoxic and antimicrobial principles from the roots of Aristolochia longa. Int J Crude Drug Res 28:149–151Google Scholar
  23. Hranjec T, Kovac A, Kos J, Mao WY, Chen JJ, Grollman AP, Jelakovic B (2005) Endemic nephropathy: the case for chronic poisoning by Aristolochia. Croat Med J 46:116–125PubMedGoogle Scholar
  24. Husaini AM, Abdin MZ (2007) Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria × ananassa Duch. In Vitro Cell Dev Biol Plant 43:576–584. doi:10.1007/s11627-007-9048-3 CrossRefGoogle Scholar
  25. Hwang MS, Park MS, Moon J-Y, Lee JS, Yum YN, Yoon E, Lee H, Nam KT, Lee BM, Kim SH, Yang KH (2006) Subchronic toxicity studies of the aqueous extract of Aristolochiae fructus in Sprague-Dawley rats. J Toxicol Environ Health 69:2157–2165. doi:10.1080/15287390600747965 CrossRefGoogle Scholar
  26. Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374. doi:10.1073/pnas.0709121104 PubMedCrossRefGoogle Scholar
  27. Jaramillo MA, Kramer EM (2004) APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evol Dev 6:449–458. doi:10.1111/j.1525-142X.2004.04053.x PubMedCrossRefGoogle Scholar
  28. Jbilou R, Ennabili A, Sayah F (2006) Insecticidal activity of four medicinal plant extracts against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Afr J Biotechnol 5:936–940Google Scholar
  29. Jimenez-Ferrer JE, Perez-Teran YY, Roman-Ramos R, Tortoriello J (2005) Antitoxin activity of plants used in Mexican traditional medicine against scorpion poisoning. Phytomedicine 12:116–122. doi:10.1016/j.phymed.2003.10.001 PubMedCrossRefGoogle Scholar
  30. Kim S, Soltis PS, Wall K, Soltis DE (2005) Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol 23:107–120. doi:10.1093/molbev/msj014 PubMedCrossRefGoogle Scholar
  31. Klitzke CF, Brown KS Jr (2000) The occurrence of aristolochic acids in neotropical troidine swallowtails (Lepidoptera: Papilionidae). Chemoecology 10:99–102. doi:10.1007/s000490050013 CrossRefGoogle Scholar
  32. Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783PubMedGoogle Scholar
  33. Poonam VK, Prasad AK, Parmar VS (2003) Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat Prod Rep 20:565–583. doi:10.1039/b303648k PubMedCrossRefGoogle Scholar
  34. Kumar VP, Chauhan NS, Padh H, Rajani M (2006) Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol 107:182–188. doi:10.1016/j.jep.2006.03.013 PubMedCrossRefGoogle Scholar
  35. Kupchan SM, Doskotch RW (1962) Tumor inhibitors. I. Aristolochic acid, the active principle of Aristolochia indica. J Med Pharm Chem 5:657–659. doi:10.1021/jm01238a029 CrossRefGoogle Scholar
  36. Lajide L, Escoubas P, Mizutani J (1993) Antifeedant activity of metabolites of Aristolochia albida against the tobacco cutworm, Spodoptera litura. J Agric Food Chem 41:669–673. doi:10.1021/jf00028a031 CrossRefGoogle Scholar
  37. Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW, Boore JL, Jansen RK, dePamphilis CW (2005) Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol Biol Evol 22:1948–1963. doi:10.1093/molbev/msi191 PubMedCrossRefGoogle Scholar
  38. Lemos VS, Thomas G, Barbosa JM (1993) Pharmacological studies on Aristolochia papillaris Mast (Aristolochiaceae). J Ethnopharmacol 40:141–145. doi:10.1016/0378-8741(93)90060-I PubMedCrossRefGoogle Scholar
  39. Levi M, Guchelaar HJ, Woerdenbag HJ, Zhu YP (1998) Acute hepatitis in a patient using a Chinese herbal tea—a case report. Pharm World Sci 20:43–44. doi:10.1023/A:1008698811463 PubMedCrossRefGoogle Scholar
  40. Ma H, dePamphilis C (2000) The ABCs of floral evolution. Cell 101:5–8. doi:10.1016/S0092-8674(00)80618-2 PubMedCrossRefGoogle Scholar
  41. Manjula S, Thomas A, Daniel B, Nair GM (1997) In vitro plant regeneration of Aristolochia indica through axillary shoot multiplication and organogenesis. Plant Cell Tissue Organ Cult 51:145–148. doi:10.1023/A:1005978125424 CrossRefGoogle Scholar
  42. Maximova SN, Dandekar AM, Guiltinan MJ (1998) Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol Biol 37:549–559. doi:10.1023/A:1006041313209 PubMedCrossRefGoogle Scholar
  43. McKersie BD, Murnaghan J, Bowley SR (1997) Manipulating freezing tolerance in transgenic plants. Acta Physiol Plant 19:485–495. doi:10.1007/s11738-997-0045-2 CrossRefGoogle Scholar
  44. Meinl W, Pabel U, Osterloh-Quiroz M, Hengstler JG, Glatt H (2006) Human sulphotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int J Cancer 118:1090–1097. doi:10.1002/ijc.21480 PubMedCrossRefGoogle Scholar
  45. Mohamed MF, Read PE, Coyne DP (1992) Dark preconditioning, CPPU, and thidiazuron promote shoot organogenesis on seedling node explants of common and faba beans. J Am Soc Hortic Sci 117:668–672Google Scholar
  46. Molina RV, Castello S, Garcia-Luis A, Guardiola JL (2007) Light cytokinin interactions in shoot formation in epicotyl cuttings of Troyer citrange cultured in vitro. Plant Cell Tissue Organ Cult 89:131–140. doi:10.1007/s11240-007-9221-8 CrossRefGoogle Scholar
  47. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  48. Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275. doi:10.1007/BF02822732 CrossRefGoogle Scholar
  49. Murugan R, Shivanna KR, Rao RR (2006) Pollination biology of Aristolochia tagala, a rare species of medicinal importance. Curr Sci 91:795–798Google Scholar
  50. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289PubMedCrossRefGoogle Scholar
  51. Nascimento IR, Murata AT, Bortoli SA, Lopes LM (2004) Insecticidal activity of chemical constituents from Aristolochia pubescens against Anticarsia gemmatalis larvae. Pest Manag Sci 60:413–416. doi:10.1002/ps.805 PubMedCrossRefGoogle Scholar
  52. Nortier JL, Martinez MM, Schmeiser HH, Arlt VM, Bieler CA, Petein M, Depierreux MF, De Pauw L, Abramowicz D, Vereerstraeten P, Vanherweghem JL (2000) Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 342:1686–1692. doi:10.1056/NEJM200006083422301 PubMedCrossRefGoogle Scholar
  53. Otero R, Nunez V, Barona J, Fonnegra R, Jimenez SL, Osorio RG, Saldarriaga M, Diaz A (2000) Snakebites and ethnobotany in the northwest region of Colombia Part III: neutralization of the haemorrhagic effect of Bothrops atrox venom. J Ethnopharmacol 73:233–241. doi:10.1016/S0378-8741(00)00321-4 PubMedCrossRefGoogle Scholar
  54. Pakrashi A, Chakrabarty B (1978) Anti-oestrogenic and anti-implantation effect of aristolochic acid from Aristolochia indica (Linn). Indian J Exp Biol 16:1283–1285PubMedGoogle Scholar
  55. Pakrashi A, Pakrasi P (1979) Anti-fertility efficacy of the plant Aristolochia indica (Linn) on mouse. Contraception 20:49–54. doi:10.1016/0010-7824(79)90043-X PubMedCrossRefGoogle Scholar
  56. Petch T (1924) Notes on Aristolochia. Ann R Bot Gard Peradeniya 8:1–108Google Scholar
  57. Qiu Q, Liu ZH, Chen HP, Yin HL, Li LS (2000) Long-term outcome of acute renal injury induced by Aristolochia. Acta Pharmacol Sin 21:1129–1135PubMedGoogle Scholar
  58. Rausher MD (1981) Host plant selection by Battus philenor butterflies: the roles of predation, nutrition, and plant chemistry. Ecol Monogr 51:1–20. doi:10.2307/2937304 CrossRefGoogle Scholar
  59. Reddy RV, Reddy MH, Raju RRV (1995) Ethnobotany of Aristolochia L. Acta Bot Indica 23:291–292Google Scholar
  60. Remashree AB, Hariharan M, Unnikrishnan K (1997) In vitro organogenesis in Aristolochia indica (L.). Phytomorphology 47:161–165Google Scholar
  61. Saebo A, Krekling T, Appelgren M (1995) Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue Organ Cult 41:177–185. doi:10.1007/BF00051588 CrossRefGoogle Scholar
  62. Sakai S (2002) Aristolochia spp. (Aristolochiaceae) pollinated by flies breeding on decomposing flowers in Panama. Am J Bot 89:527–534. doi:10.3732/ajb.89.3.527 CrossRefGoogle Scholar
  63. Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408PubMedGoogle Scholar
  64. Sands DPA, Scott SE, Moffatt R (1997) The threatened Richmond birdwing butterfly (Ornithoptera richmondia (Gray)): a community conservation project. Mem Mus Vic 56:449–453Google Scholar
  65. Shafi PM, Rosamma MK, Jamil K, Reddy PS (2002) Antibacterial activity of the essential oil from Aristolochia indica. Fitoterapia 73:439–441. doi:10.1016/S0367-326X(02)00130-2 PubMedCrossRefGoogle Scholar
  66. Soniya EV, Sujitha M (2006) An efficient in vitro propagation of Aristolochia indica. Biol Plant 50:272–274. doi:10.1007/s10535-006-0018-0 CrossRefGoogle Scholar
  67. Tabatabaei SJ, Yusefi M, Hajiloo J (2008) Effects of shading and NO3:NH4 ratio on the yield, quality and N metabolism in strawberry. Sci Hortic (Amsterdam) 116:264–272. doi:10.1016/j.scienta.2007.12.008 CrossRefGoogle Scholar
  68. Trujillo CG, Sersic AN (2006) Floral biology of Aristolochia argentina (Aristolochiaceae). Flora 201:374–382Google Scholar
  69. Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131:6083–6091. doi:10.1242/dev.01523 PubMedCrossRefGoogle Scholar
  70. Zahn LM, Kong HZ, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-Box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223. doi:10.1534/genetics.104.037770 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Barbara J. Bliss
    • 1
    • 2
  • Lena Landherr
    • 1
    • 2
  • Claude W. dePamphilis
    • 1
    • 2
  • Hong Ma
    • 1
    • 2
  • Yi Hu
    • 1
    • 2
  • Siela N. Maximova
    • 3
  1. 1.Department of Biology, Institute of Molecular Evolutionary GeneticsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.The Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.The Department of HorticultureThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations