Effects of low temperature stress on rice (Oryza sativa L.) plastid ω-3 desaturase gene, OsFAD8 and its functional analysis using T-DNA mutants

  • Prakash M. Gopalakrishnan Nair
  • In-Soon Kang
  • Byoung-Yong Moon
  • Choon-Hwan Lee
Original Paper


Expression of two rice plastidial omega-3 desaturase genes, OsFAD7 and OsFAD8 under different temperatures has been investigated. Transcript levels of OsFAD7 increased at high temperature; while those of OsFAD8 increased at low temperatures. Fatty acid analysis of homozygous OsFAD8 T-DNA knockout mutant and wild type plants have exhibited changes in fatty acid composition after cold stress, thus confirming that OsFAD8 gene codes for omega-3 fatty acid desaturase activity at low temperature. Photosynthetic efficiency and recovery of OsFAD8 knockout mutants are significantly reduced after cold stress as compared to those of wild type plants. Characterization of OsFAD8 suggests that it has a functional role in maintaining levels of trienoic fatty acids and stress tolerance at low temperatures.


Plastid omega-3 desaturase OsFAD8 Oryzasativa Temperature stress T-DNA mutants Photosynthetic efficiency 



Polymerase chain reaction


Reverse transcriptase polymerase chain reaction


Fatty acid desaturase
















Photosystem II


  1. An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Ju J, Kim SR, Kim YH, Lee M, Han S, Kim SJ, Yang J, Kim E, Wi SJ, Chung HS, Hong JP, Choe V, Lee HK, Choi JH, Nam J, Kim SR, Park PB, Park KY, Kim WT, Choe S, Lee CB, An G (2000) Generation and analysis of end sequence database for T-DNA tagging lines in Rice. Plant Physiol 133:2040–2047. doi: 10.1104/pp.103.030478 CrossRefGoogle Scholar
  2. Berberich T, Harada M, Sugawara K, Kodama H, Iba K, Kusano T (1998) Two maize genes encoding omega-3 fatty acid desaturases and their differential expression to low temperature. Plant Mol Biol 36:297–306. doi: 10.1023/A:1005993408270 PubMedCrossRefGoogle Scholar
  3. Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543. doi: 10.1146/annurev.pp.31.060180.002423 CrossRefGoogle Scholar
  4. Bligh EG, Dyer WJ (1995) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917Google Scholar
  5. Browse J, McConn M, James D Jr, Miquel M (1993) Mutants of Arabidopsis deficient in the synthesis of α-linolenate. J Biol Chem 268:16345–163451PubMedGoogle Scholar
  6. Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57. doi: 10.1023/A:1007585532036 CrossRefGoogle Scholar
  7. Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990. doi: 10.1073/pnas.060034297 PubMedCrossRefGoogle Scholar
  8. Errampalli D, Patton D, Castle L, Mickelson L, Hansen K, Schnall J, Feldmann K, Meinke D (1991) Embryonic lethals and T-DNA insertional mutagenesis in Arabidopsis. Plant Cell 3:149–157PubMedCrossRefGoogle Scholar
  9. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92Google Scholar
  10. Gibson S, Arondel V, Iba K, Somerville C (1994) Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol 106:1615–1621. doi: 10.1104/pp.106.4.1615 PubMedCrossRefGoogle Scholar
  11. Graham D, Patterson BD (1982) Responses of plants to low, non-freezing temperatures: proteins, metabolism and acclimation. Annu Rev Plant Physiol 33:347–372. doi: 10.1146/annurev.pp.33.060182.002023 CrossRefGoogle Scholar
  12. Hamada T, Kodama H, Takeshita K, Utsumi H, Iba K (1998) Characterization of transgenic tobacco with an increased α-linolenic acid level. Plant Physiol 118:591–598. doi: 10.1104/pp.118.2.591 PubMedCrossRefGoogle Scholar
  13. Harwood JL (1998) Involvement of chloroplast lipids in the reaction of plants submitted to stress. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 287–302Google Scholar
  14. Horiguchi G, Iwakawa H, Kodama H, Kawakami N, Nishimura M, Iba K (1996) Expression of a gene for plastid omega-3 fatty acid desaturase and changes in lipid and fatty acid compositions in light- and dark-grown wheat leaves. Physiol Plant 96:275–283. doi: 10.1111/j.1399-3054.1996.tb00214.x CrossRefGoogle Scholar
  15. Horiguchi G, Kawakami N, Kusumi K, Kodama H, Iba K (1998) Developmental regulation of genes for microsome and plastid omega-3 fatty acid desaturases in wheat (Triticum aestivum L.). Plant Cell Physiol 39:540–544Google Scholar
  16. Hugly S, Kunst L, Browse J, Somerville C (1989) Enhanced thermal tolerance of photosynthesis and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid desaturation. Plant Physiol 90:1134–1142. doi: 10.1104/pp.90.3.1134 PubMedCrossRefGoogle Scholar
  17. Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T, Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat Biotechnol 14:1003–1006. doi: 10.1038/nbt0896-1003 PubMedCrossRefGoogle Scholar
  18. Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570. doi: 10.1046/j.1365-313x.2000.00767.x PubMedCrossRefGoogle Scholar
  19. Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644. doi: 10.1104/pp.014357 PubMedCrossRefGoogle Scholar
  20. Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast omega-3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105:601–605PubMedGoogle Scholar
  21. Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466. doi: 10.1007/s11103-007-9213-4 PubMedCrossRefGoogle Scholar
  22. Lee S, Kim J, Son JS, Nam J, Jeong DH, Lee K, Jang S, Yoo J, Lee J, Lee DY, Kang HG, An G (2003) Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol 44:1403–1411. doi: 10.1093/pcp/pcg156 PubMedCrossRefGoogle Scholar
  23. Los DA, Murata N (2004) Membrane fluidity and its role in the perception of environmental signals. Biochim Biophys Acta 1666:142–157PubMedGoogle Scholar
  24. Los D, Horvath I, Vigh L, Murata N (1993) The temperature dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett 318:57–60. doi: 10.1016/0014-5793(93)81327-V PubMedCrossRefGoogle Scholar
  25. McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416PubMedCrossRefGoogle Scholar
  26. Meng Z, Rivka B, Mingan Y, Yardena GD, Alicia LF, Yehiam S, Sara S, Gozal BH (2005) Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44:361–371. doi: 10.1111/j.1365-313X.2005.02536.x CrossRefGoogle Scholar
  27. Miquel M, James D, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA 90:6208–6212. doi: 10.1073/pnas.90.13.6208 PubMedCrossRefGoogle Scholar
  28. Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photo inhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6219–6233. doi: 10.1073/pnas.92.14.6219 PubMedCrossRefGoogle Scholar
  29. Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287:476–479. doi: 10.1126/science.287.5452.476 PubMedCrossRefGoogle Scholar
  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  31. Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713. doi: 10.1038/356710a0 CrossRefGoogle Scholar
  32. Palta JP, Whitaker BD, Weiss LS (1993) Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species. Plant Physiol 103:793–803PubMedGoogle Scholar
  33. Piffanelli P, Ross JHE, Murphy DJ (1997) Intra- and extra-cellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant J 11:549–562. doi: 10.1046/j.1365-313X.1997.11030549.x PubMedCrossRefGoogle Scholar
  34. Poghosyan ZP, Haralampidis K, Martsinkovskaya AI, Murphy DJ, Hatzopoulos P (1999) Developmental regulation and spatial expression of a plastidial fatty acid desaturase from Olea europaea. Plant Physiol Biochem 37:109–119. doi: 10.1016/S0981-9428(99)80072-2 CrossRefGoogle Scholar
  35. Routaboul JM, Fisher SF, Browse J (2000) Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant Physiol 124:1697–1705. doi: 10.1104/pp.124.4.1697 PubMedCrossRefGoogle Scholar
  36. Ryu CH, You JH, Kang HG, Hur J, Kim YH, Han MJ, An K, Chung BC, Lee CH, An G (2004) Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol Biol 54:489–502. doi: 10.1023/B:PLAN.0000038257.93381.05 PubMedCrossRefGoogle Scholar
  37. Sakurai I, Hagio M, Gombos Z, Tyystjarvi T, Paakkarinen V, Aro EM, Wada H (2003) Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant Physiol 133:1376–1384. doi: 10.1104/pp.103.026955 PubMedCrossRefGoogle Scholar
  38. Somerville C, Browse J (1991) Plant lipids: metabolism, mutants and membranes. Science 252:80–87. doi: 10.1126/science.252.5002.80 PubMedCrossRefGoogle Scholar
  39. Toriyama S, Hinata K, Nishida I, Murata N (1988) Prominent difference of glycerolipids among anther walls, pollen grains and leaves of rice and maize. Plant Cell Physiol 29:615–621Google Scholar
  40. Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278. doi: 10.1016/S0163-7827(01)00027-3 PubMedCrossRefGoogle Scholar
  41. Wang J, Ming F, Pitman J, Han Y, Hu J, Guo B, Shen D (2006) Characterization of a rice (Oryza sativa L.) gene encoding a temperature-dependent chloroplast omega-3 fatty acid desaturase. Biochem Biophys Res Commun 340:1209–1216. doi: 10.1016/j.bbrc.2005.12.126 PubMedCrossRefGoogle Scholar
  42. Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR Jr, Schweiger B, Stecca KL (1993) Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol 103:467–476. doi: 10.1104/pp.103.2.467 PubMedCrossRefGoogle Scholar
  43. Yara A, Yaeno T, Hasegawa M, Seto H, Montillet JL, Kusumi K, Seo S, Iba K (2007) Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of omega-3 fatty acid desaturases. Plant Cell Physiol 48(9):1263–1274. doi: 10.1093/pcp/pcm107 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Prakash M. Gopalakrishnan Nair
    • 1
  • In-Soon Kang
    • 2
  • Byoung-Yong Moon
    • 2
  • Choon-Hwan Lee
    • 1
  1. 1.Department of Biological SciencesPusan National UniversityPusanRepublic of Korea
  2. 2.Inje UniversityGimhaeRepublic of Korea

Personalised recommendations