Callogenesis and rhizogenesis in date palm leaf segments: are there similarities between the two auxin-induced pathways?

  • B. Gueye
  • H. Saïd-Ahmed
  • F. Morcillo
  • A. Borgel
  • D. Sané
  • J.-L. Hilbert
  • J.-L. Verdeil
  • A.-S. BlervacqEmail author
Original Paper


In date palm (Phoenix dactylifera L. cv. Ahmar, Arecaceae), as for many monocotyledons, callogenesis is a prerequisite for the initiation of somatic embryogenesis, and requires the presence of auxin in the medium. Immature leaf explants were cultivated in medium supplemented with either 1 or 54 μM 1-naphtaleneacetic acid in order to induce either rhizogenesis or callogenesis. Histological studies performed throughout the culture period established that precocious cell reactivation is similar in both morphogenetic pathways. Early cytological modifications are associated with cell reactivation and are observed in the pluripotent cells of perivascular sheaths. Divergence between the callogenesis and rhizogenesis pathways is observed later, during the subsequent determination and morphological differentiation phases. We established that in date palm, the rhizogenesis and callogenesis pathways are initiated from the same cell type, the ultimate developmental fate depending upon auxin concentration.


Auxin Cell competence Developmental patterns NAA Phoenix dactylifera Pluripotency 



Callus induction medium


Fascicular parenchyma


1-Naphtaleneacetic acid


Naphtol blue-black


Periodic acid Schiff


Root primordium


Root induction medium



H. Saïd-Ahmed gratefully acknowledges grant from EGIDE-Ministère des affaires étrangères (France) for his Master’s degree. B. Gueye and D. Sané were supported by grants from the department for capacity-building support to scientific communities in the South (DSF, Institut de Recherche pour le Développement-IRD). Histological sections of nodular callus and root/root-like structure at d63 were kindly provided by Mrs M. Collin (IRD). F. Aberlenc-Bertossi (IRD) is also thanked for her comments on oil and date palms histology. The authors are indebted to Prof S. Hawkins (UMR 1281, USTL) for his critical reading of the manuscript, valuable discussion and checking English language.


  1. Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393. doi: 10.1016/S1360-1385(00)01725-8 PubMedCrossRefGoogle Scholar
  2. Berleth T, Scarpella E, Friml J, Marcos D (2006) Control leaf vascular patterning by polar axis. Dev Biol 295:S403. doi: 10.1016/j.ydbio.2006.04.236 CrossRefGoogle Scholar
  3. Besse I, Verdeil JL, Duval Y, Sotta B, Maldiney R, Miginiac R, Migininac E (1992) Oil palm (Elaeis guineensis Jacq.) clonal fidelity: endogenous cytokinins and indolacetic acid in embryogenic callus cultures. J Exp Bot 43:983–989. doi: 10.1093/jxb/43.7.983 CrossRefGoogle Scholar
  4. Blervacq AS, Dubois T, Dubois J, Vasseur J (1995) First divisions of somatic embryogenic cells in Cichorium hybrid ‘474’. Protoplasma 186:163–168. doi: 10.1007/BF01281326 CrossRefGoogle Scholar
  5. Buffard-Morel J, Verdeil JL, Pannetier C (1992) Embryogenèse somatique du cocotier (Cocos nucifera L.) à partir d’explant foliaire: étude histologique. Can J Bot 70:735–741Google Scholar
  6. Chapman A, Blervacq AS, Vasseur J, Hilbert JL (2000) Cell wall differentiation during early somatic embryogenesis. Can J Bot 78:816–823. doi: 10.1139/cjb-78-6-816 CrossRefGoogle Scholar
  7. Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95:288–293. doi: 10.1016/0012-1606(83)90029-5 PubMedCrossRefGoogle Scholar
  8. Costa S, Shaw P (2007) “Open minded” cells: how cells can change fate. Trends Cell Biol 17:1001–1106. doi: 10.1016/j.tcb.2006.12.005 CrossRefGoogle Scholar
  9. D’Onofrio C, Morini S (2006) Somatic embryo, adventitious root and shoot regeneration in vitro grown quince leaves as influenced by treatments of different length with growth regulators. Sci Hortic (Amsterdam) 107:194–199. doi: 10.1016/j.scienta.2005.05.016 CrossRefGoogle Scholar
  10. Dubois T, Guedira M, Dubois J, Vasseur J (1991) Direct somatic embryogenesis in leaves of Cichorium. A histological and SEM study of early stages. Protoplasma 162:120–127. doi: 10.1007/BF02562555 CrossRefGoogle Scholar
  11. Dussert S, Verdeil JL, Rival A, Noirot M, Buffard-Morel J (1995) Nutrient uptake and growth of in vitro coconut (Cocos nucifera L.) calluses. Plant Sci 106:186–196. doi: 10.1016/0168-9452(95)04079-A CrossRefGoogle Scholar
  12. Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss. Org. Cult. 74:201–228. doi: 10.1023/A:1024033216561 CrossRefGoogle Scholar
  13. Fernando SC, Gamage CK (2000) Abscisic acid induced somatic embryogenesis in immature embryo of coconut (Cocos nucifera L.). Plant Sci 151:193–198. doi: 10.1016/S0168-9452(99)00218-6 PubMedCrossRefGoogle Scholar
  14. Fernando SC, Verdeil JL, Hocher V, Weerakoon LK, Khirimburegama K (2003) Histological analysis of plant regeneration from plumule explants of Cocos nucifera L. Plant Cell Tiss. Org. Cult. 72:281–284. doi: 10.1023/A:1022345011002 CrossRefGoogle Scholar
  15. Filippi SB, Appezzato-da-gloria B, Rodriguez APM (2001) Histological changes in banana explants, cv. Nanicão (Musa spp., Group AAA), submitted to different auxins for induction of somatic embryogenesis. Rev. Brasil. Bot., São Paulo V24(suppl 4):595–602Google Scholar
  16. Fisher DB (1968) Protein staining of ribonned epon section for light microscopy. Histochemie 16:92–96. doi: 10.1007/BF00306214 PubMedCrossRefGoogle Scholar
  17. Fobert PR, Webb DT (1988) Effects of polyamine precursors and polyamine biosynthesis inhibitors on somatic embryogenesis from eggplant (Solanum melongena) cotyledons. Can J Bot 66:1734–1742Google Scholar
  18. Hunault G (1979) Recherches sur le comportement de fragments d’organes et des tissus de monocotylédones cultivés in vitro. le Botaniste 2:259–287Google Scholar
  19. Jordan M, Humam M, Bieri S, Christen P, Poblete E, Munoz O (2006) In vitro shoot and root organogenesis, plant regeneration and production of tropane alkaloids in some species of Shizanthus. Phytochemistry 67:570–578. doi: 10.1016/j.phytochem.2005.12.007 PubMedCrossRefGoogle Scholar
  20. Kanmegne G, Omokolo ND (2003) Changes in phenol content and peroxidase activity during in vitro organogenesis in Xanthosoma sagittifolium L. Plant Growth Regul 40:53–57. doi: 10.1023/A:1023076629044 CrossRefGoogle Scholar
  21. Laparra H, Bronner R, Hahne G (1997) Amyloplast as a possible indicator of morphogenic potential in sunflower protoplasts. Plant Sci 122:183–192. doi: 10.1016/S0168-9452(96)04536-0 CrossRefGoogle Scholar
  22. Morel G, Wetmore RM (1951) Fern callus tissue culture. Am J Bot 38:141–143. doi: 10.2307/2437837 CrossRefGoogle Scholar
  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and biassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  24. Nyman LP, Gonzales CJ, Arditti J (1983) Reversible structural changes associated with callus formation and plantlet development from aseptically cultured shoot of Taro. Ann Bot (Lond) 51:279–286Google Scholar
  25. Osawa S, Yasutani I, Fukuda H, Komamine A, Sugiyama M (1998) Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development 125:135–142Google Scholar
  26. Pannetier C, Arthuis P, Levoux D (1981) Néoformation de plantes d’Eleais guineensis à partir de cals primaires obtenus sur fragments foliaires cultivés in vitro. Oleagineux 36:119–122Google Scholar
  27. Puigderrajols P, Mir G, Molinas M (2001) Ultrastructure of early secondary somatic embryogenesis by multicellular and unicellular pathways in cork oak (Quercus suber L.). Ann Bot (Lond) 87:179–189. doi: 10.1006/anbo.2000.1317 CrossRefGoogle Scholar
  28. Ramanayake SMSD, Wanniarachchi WAVR (2002) Organogenesis in callus derived from and adult giant bamboo (Dendrocalamus giganteus wall. Ex. Munro). Sci Hortic (Amsterdam) 98:195–200. doi: 10.1016/S0304-4238(02)00204-2 CrossRefGoogle Scholar
  29. Rose RJ, Wang XD, Nolan KE, Rolfe BG (2006) Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene. J Exp Bot 57:2227–2235. doi: 10.1093/jxb/erj187 PubMedCrossRefGoogle Scholar
  30. Sané D, Aberlenc-Bertossi F, Gassama-Dia YK, Sagna M, Trouslot MF, Duval Y, Borgel A (2006) Histological analysis of callogenesis and somatic embryogenesis from cell suspension of date palm (Phoenix dactylifera L.). Ann Bot (Lond) 98:301–308. doi: 10.1093/aob/mcl104 CrossRefGoogle Scholar
  31. Schwendiman J, Pannetier C, Michaux-Ferriere N (1988) Histology of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Ann Bot (Lond) 62:43–52Google Scholar
  32. Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2:61–64. doi: 10.1016/S1369-5266(99)80012-0 PubMedCrossRefGoogle Scholar
  33. Verdeil JL, Huet C, Grosdemange F, Buffard-Morel J (1994) Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep 13:218–221. doi: 10.1007/BF00239896 CrossRefGoogle Scholar
  34. Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferrière N, Nicole M (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot (Lond) 88:9–18. doi: 10.1006/anbo.2001.1408 CrossRefGoogle Scholar
  35. Verdeil L, Alemanno L, Niemenack N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252. doi: 10.1016/j.tplants.2007.04.002 PubMedCrossRefGoogle Scholar
  36. Wildwater M, Campilho A, Perez-Perez JM, Heidstra R, Blilou I, Korthout H, Chatterjee J, Mariconti L, Gruissem W, Scheres B (2005) The RETINOBASTOMA-RELATED gene regulates stem cells maintenance in Arabidopsis roots. Cell 123:1337–1349. doi: 10.1016/j.cell.2005.09.042 PubMedCrossRefGoogle Scholar
  37. Woodward AW, Bartel B (2005) Auxin: regulation, actions and interaction. Ann Bot (Lond) 95:707–735. doi: 10.1093/aob/mci083 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • B. Gueye
    • 1
  • H. Saïd-Ahmed
    • 2
    • 3
  • F. Morcillo
    • 4
  • A. Borgel
    • 5
  • D. Sané
    • 1
  • J.-L. Hilbert
    • 2
  • J.-L. Verdeil
    • 6
  • A.-S. Blervacq
    • 2
    Email author
  1. 1.Faculté des Sciences et Techniques, Laboratoire de Biotechnologies VégétalesUniversité Cheikh Anta DiopDakarSénégal
  2. 2.UMR USTL, INRA 1281 Stress abiotiques et différenciation des végétaux cultivés, Université des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance
  3. 3.Centre d’Etudes et de Recherches de Djibouti, CERD-ISVDjiboutiRépublique de Djibouti
  4. 4.CIRAD, UMR DIAPC, Palm Development GroupMontpellierFrance
  5. 5.IRD, UMR DIAPC, Palm Development GroupMontpellierFrance
  6. 6.CIRAD, UMR DAP, Plateau d’Histologie et d’Imagerie cellulaire Végétale (PHIV)MontpellierFrance

Personalised recommendations