Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment

  • Gema Pérez-Barranco
  • Rocío Torreblanca
  • Isabel M. G. Padilla
  • Carolina Sánchez-Romero
  • Fernando Pliego-Alfaro
  • José A. Mercado
Original Paper


As a first step to the establishment of a genetic transformation protocol for olive somatic embryos obtained from the seeds of cv. ‘Picual’, the efficiencies of different aminoglycoside antibiotics as selective agents to be used with the nptII marker gene, and the particle bombardment technique for transient transformation have been evaluated. Among the three antibiotics tested, paromomycin and kanamycin showed a similar inhibitory effect and, at 200 mg l−1, both of them impaired callus growth after 8 weeks of culture. However, when isolated embryos were cultured in the presence of these antibiotics, a 20% of the embryos still remained viable at 400 mg l−1. Neomycin was discarded as a selective agent since it showed only a moderate toxic effect. Contrary to solid medium, when olive callus was cultured in liquid medium supplemented with different paromomycin concentrations for 3 weeks, the callus growth was impaired at the lowest antibiotic concentration, 3 mg l−1. Best conditions for transient transformation of olive callus using PDS-1000/He system were a 6 cm target distance and a 900 psi bombardment pressure. pCGU∆1 plasmid, containing the gus gene under the control of sunflower ubiquitin promoter yielded a significantly higher number of gus expression areas per bombarded explant than pGUSINT or pJGUS5 plasmids, where the gus gene is driven by CaMV35S promoter or CaMV35S with enhancer, respectively. Almost 45% of bombarded explants showed gus expression 12 weeks after bombardment.


Biolistics Genetic transformation Olive Particle bombardment Selectable marker Somatic embryos 



Driver and Kuniyuki medium


Olive cyclic embryogenesis medium


Murashige and Skoog medium


Olive embryogenic calli


Olive medium



This research was funded by Dirección General de Investigación y Formación Agraria y Pesquera, Consejería de Agricultura y Pesca, Junta de Andalucía (project CAO00-018-C7-5) and Fundación Genoma España (Oleagen project). The authors thank to Dr. Luc-Henri Tessier for providing the pCGU∆1 plasmid.


  1. Acebedo MM, Lavee S, Liñan J, Troncoso A (1997) In vitro germination of embryos for speeding up seedling development in olive breeding programmes. Sci Hortic (Amsterdam) 69:207–215. doi: 10.1016/S0304-4238(97)00004-6 CrossRefGoogle Scholar
  2. Benelli C, Fabbri A, Grassi S, Lambardi M, Rugini E (2001) Histology of somatic embryogenesis in mature tissues of olive (Olea europaea L.). J Hortic Sci 76:112–119Google Scholar
  3. Binet MN, Lepetit M, Weil JH, Tessier LH (1991) Analysis of a sunflower polyubiquitin promoter by transient expression. Plant Sci 79:87–94. doi: 10.1016/0168-9452(91)90073-H CrossRefGoogle Scholar
  4. Cañas LA, Benbadis A (1988) In vitro plant regeneration from cotyledon fragments of the olive tree (Olea europaea L.). Plant Sci 54:65–74. doi: 10.1016/0168-9452(88)90056-8 CrossRefGoogle Scholar
  5. Catlin DW (1990) The effect of antibiotics on the inhibition of callus induction and plant regeneration from cotyledons of sugarbeet (Beta vulgaris L.). Plant Cell Rep 9:285–288. doi: 10.1007/BF00232303 CrossRefGoogle Scholar
  6. Clavero-Ramírez I, Pliego-Alfaro F (1990) Germinación in vitro de embriones maduros de olivo (Olea europaea). Actas Horticultura 1:512–516Google Scholar
  7. D’Angeli S, Altamura MM (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225:1147–1163. doi: 10.1007/s00425-006-0426-6 PubMedCrossRefGoogle Scholar
  8. Day AG, Bejarano ER, Burrell M, Buck K, Lichtenstein C (1991) Expression of antisense RNA in transgenic tobacco plants confer resistance to geminivirus infection. Proc Natl Acad Sci USA 88:6721–6725. doi: 10.1073/pnas.88.15.6721 PubMedCrossRefGoogle Scholar
  9. Elliott AR, Campbell JA, Dugdale B, Brettell RIS, Grof CPL (1999) Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Rep 18:707–714. doi: 10.1007/s002990050647 CrossRefGoogle Scholar
  10. Escandon AS, Hahne G (1991) Genotype and composition of culture-medium are factors important in the selection for transformed sunflower (Helianthus-annuus) callus. Physiol Plant 81:367–376. doi: 10.1111/j.1399-3054.1991.tb08745.x CrossRefGoogle Scholar
  11. Escobar MA, Park J-I, Polito VS, Leslie CA, Uratsu SL, McGranahan GH, Dandekar AM (2000) Using GFP as a scorable marker in walnut somatic embryo transformation. Ann Bot (Lond) 85:831–835. doi: 10.1006/anbo.2000.1143 CrossRefGoogle Scholar
  12. González AE, Schöpke C, Taylor NJ, Beachy RN, Fauquet CM (1998) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Rep 17:827–831. doi: 10.1007/s002990050492 CrossRefGoogle Scholar
  13. Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791. doi: 10.1007/s00299-005-0081-6 PubMedCrossRefGoogle Scholar
  14. Jefferson RA (1987) Assaying chimaeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405. doi: 10.1007/BF02667740 CrossRefGoogle Scholar
  15. Kapaun JA, Cheng Z-M (1999) Aminoglycoside antibiotics inhibit shoot regeneration from Siberian Elm leaf explants. HortScience 34:727–729Google Scholar
  16. Laine E, Lamblin F, Lacoux J, Dupre P, Roger D, Sihachakr D, David A (2000) Gelling agent influences the detrimental effect of kanamycin on adventitious budding in flax. Plant Cell Tissue Organ Cult 63:77–80. doi: 10.1023/A:1006455918041 CrossRefGoogle Scholar
  17. Lambardi M, Benelli C, Amorosi S, Branca C, Caricato G, Rugini E (1999) Microprojectile-DNA delivery in somatic embryos of olive (Olea europaea L.). Acta Hortic 474:505–509Google Scholar
  18. Li Z, Upadhyaya NM, Meena S, Gibbs AJ, Waterhouse PM (1997) Comparison of promoters and selectable marker genes for use in Indica rice transformation. Mol Breed 3:1–14. doi: 10.1023/A:1009600219477 CrossRefGoogle Scholar
  19. Mencuccini M, Micheli M, Angiolillo A, Baldoni L (1999) Genetic transformation of olive (Olea europaea L.) using Agrobacterium tumefaciens. Acta Hortic 474:515–519Google Scholar
  20. Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232. doi: 10.1016/j.jbiotec.2003.10.011 PubMedCrossRefGoogle Scholar
  21. Montoro P, Rattana W, Pujade-Renaud V, Michaux-Ferriere N, Monkolsook Y, Kanthapura R, Adunsadthapong S (2003) Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep 21:1095–1102. doi: 10.1007/s00299-003-0632-7 PubMedCrossRefGoogle Scholar
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  23. Norelli JL, Aldwinckle HS (1993) The role of aminoglycoside antibiotics in the regeneration and selection of neomycin phosphotransferase-transgenic apple tissue. J Am Soc Hortic Sci 118:311–316Google Scholar
  24. Orinos T, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in calli from wild olive (Olea europaea var sylvestris (Miller) Lehr) mature zygotic embryos. Plant Cell Tissue Organ Cult 17:183–187. doi: 10.1007/BF00041288 CrossRefGoogle Scholar
  25. Pérez-Barranco G, Mercado JA, Pliego-Alfaro F, Sánchez-Romero C (2007) Genetic transformation of olive somatic embryos through biolistic. Acta Hortic 738:473–477Google Scholar
  26. Petri C, Alburquerque N, Burgos L (2005) The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptII-transformed leaf tissues. Plant Cell Tissue Organ Cult 80:271–276. doi: 10.1007/s11240-004-1019-3 CrossRefGoogle Scholar
  27. Revilla MA, Pacheco J, Casares A, Rodríguez R (1996) In vitro reinvigoration of mature olive trees (Olea europaea L.) through micrografting. In Vitro Cell Dev Biol Plant 32:257–261. doi: 10.1007/BF02822697 CrossRefGoogle Scholar
  28. Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Bervillé A, Martin A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282PubMedGoogle Scholar
  29. Rugini E, Baldoni L (2005) Olea europaea olive. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publishing, Cambridge, pp 404–428Google Scholar
  30. Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) ‘Canino’ and ‘Moraiolo’. Plant Cell Rep 14:257–260. doi: 10.1007/BF00233645 CrossRefGoogle Scholar
  31. Rugini E, Gutiérrez-Pesce P (2006) Genetic improvement of olive. Pomologia Croat 12:43–74Google Scholar
  32. Rugini E, Rita B, Rosario M (2000) Olive (Olea europaea var. sativa) transformation. In: Jain SM, Minocha SC (eds) Molecular Biology of Woody Plants, vol 2. Kluwer Academic Publishers, Dordrecht, pp 245–279Google Scholar
  33. Sánchez N, Manzanera JA, Pintos B, Bueno MA (2005) Agrobacterium-mediated transformation of cork oak (Quercus suber L.) somatic embryos. New For 29:169–176. doi: 10.1007/s11056-005-0208-1 Google Scholar
  34. Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509. doi: 10.1016/0076-6879(93)17086-K PubMedCrossRefGoogle Scholar
  35. Shin Y-M, Choe G, Shin B, Yi G, Yun P-Y, Yang K, Lee JS, Kwak S-S, Kim K-M (2007) Selection of nptII transgenic sweetpotato plants using G418 and paromomycin. J Plant Biol 50:206–212CrossRefGoogle Scholar
  36. Tadesse Y, Sági L, Swennen R, Jacobs M (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue Organ Cult 75:1–18. doi: 10.1023/A:1024664817800 CrossRefGoogle Scholar
  37. Tian LN, Brown DCW, Webb J (2000) Transient expression of a reporter gene changes significantly during somatic embryogenesis in alfalfa. Can J Plant Sci 80:765–771Google Scholar
  38. Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250. doi: 10.1007/BF00260489 PubMedCrossRefGoogle Scholar
  39. Wakita Y, Otani M, Hamada T, Mori M, Iba K, Shimada T (2001) A tobacco microsomal ω-3-fatty acid desaturase gene increases the linolenic acid content in transgenic sweetpotato (Ipomoea batatas). Plant Cell Rep 20:244–249. doi: 10.1007/s002990100316 CrossRefGoogle Scholar
  40. Wang Q, Li P, Hanania U, Sahar N, Mawassi M, Gafny R, Sela I, Tanne E, Perl A (2005) Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Plant Sci 168:565–571. doi: 10.1016/j.plantsci.2004.09.033 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Gema Pérez-Barranco
    • 1
  • Rocío Torreblanca
    • 1
  • Isabel M. G. Padilla
    • 1
  • Carolina Sánchez-Romero
    • 1
  • Fernando Pliego-Alfaro
    • 1
  • José A. Mercado
    • 1
  1. 1.Departamento de Biología VegetalUniversidad de MálagaMálagaSpain

Personalised recommendations