Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 96, Issue 3, pp 289–296 | Cite as

Cryopreservation of hairy root cultures of Maesa lanceolata and Medicago truncatula

  • E. Lambert
  • A. Goossens
  • B. Panis
  • M. C. Van Labeke
  • D. Geelen
Original Paper

Abstract

To study the production of secondary metabolites of Maesa lanceolata and Medicago truncatula, hairy root cultures of both plant species were established. Because maintenance of large numbers of cultures is laborious and costly, we developed a cryopreservation protocol and stored different isolated lines over time. Using encapsulation-dehydration, high survival rates were observed for both Maesa and Medicago hairy roots. Root tips were isolated and encapsulated in calcium-alginate beads, containing 0.1 M sucrose. The encapsulated hairy roots were precultured for 3 days using basal medium containing high sucrose concentrations. Medicago root tip growth during the preculturing time lead to unwanted outgrowth which could be tempered by addition of plant growth inhibitors. After preculturing, the beads were dehydrated in the air flow of a laminar flow until 35–40% of the initial bead weight was reached. Dehydrated beads were plunged into liquid nitrogen and after different storage times thawed in a water bath at 40°C. The survival rates were 90% for Maesa and 53% for Medicago, which are sufficient to allow implementation in large storage experimental set-ups.

Keywords

Maesa lanceolata Medicago truncatula Hairy roots Cryopreservation Vitrification Encapsulation-dehydration 

Notes

Acknowledgements

This work was funded by IWT-Flanders; SBO Combiplan, Project No. SBO#040093.

References

  1. Bagalwa M, Chifundera K (2007) Environmental impact evaluation of the stem bark extract of Maesa lanceolata used in Democratic Republic of Congo. J Ethnopharmacol 114:281–284. doi:10.1016/j.jep.2005.11.036 PubMedCrossRefGoogle Scholar
  2. Cha-Um S, Kirdmanee C, Huyen PX, Vathany T (2007) Disease-free production and minimal-growth preservation of in vitro banana (Musa spp.). In: Hummer KE (ed) Proceedings of the second international symposium on plant genetic resources of horticultural crops, Vols. 1 and 2. Acta horticulurae, Seoul, pp 233–240Google Scholar
  3. Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433. doi:10.1079/IVP2004541 CrossRefGoogle Scholar
  4. Francis G, Kerem Z, Makkar HP, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605. doi:10.1079/BJN2002725 PubMedCrossRefGoogle Scholar
  5. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185. doi:10.1007/s00253-007-0856-5 PubMedCrossRefGoogle Scholar
  6. Grout BWW (1995) Introduction to the in vitro preservation of plant cells, tissues and organs. In: Grout BWW (ed) Genetic preservation of plant cells in vitro. Springer, Berlin, pp 1–20Google Scholar
  7. Hirata K, Goda S, Phunchindawan M, Du D, Ishio M, Sakai A, Miyamoto K (1998) Cryopreservation of horseradish hairy root cultures by encapsulation-dehydration. J Ferment Bioeng 86:418–420. doi:10.1016/S0922-338X(99)89017-5 CrossRefGoogle Scholar
  8. Hirata K, Mukai M, Goda S, Ishio-Kinugasa M, Yoshida K, Sakai A, Miyamoto K (2002) Cryopreservation of hairy root cultures of Vinca minor (L.) by encapsulation-dehydration. Biotechnol Lett 24:371–376. doi:10.1023/A:1014564804048 CrossRefGoogle Scholar
  9. Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127. doi:10.1111/j.1744-7909.2006.00121.x CrossRefGoogle Scholar
  10. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403. doi:10.1146/annurev.arplant.47.1.377 PubMedCrossRefGoogle Scholar
  11. Kapusta I, Janda B, Stochmal A, Oleszek W (2005) Determination of saponins in aerial parts of barrel medic (Medicago truncatula) by liquid chromatography-electrospray ionization/mass spectrometry. J Agric Food Chem 53:7654–7660. doi:10.1021/jf051256x PubMedCrossRefGoogle Scholar
  12. Kim Y, Wyslouzil BE, Weathers PJ (2002) Invited review: secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10. doi:10.1079/IVP2001243 Google Scholar
  13. Krizan B, Ondrusikova E, Dradi G, Rocasaglia R (2006) The effect of paclobutrazol on in vitro rooting and growth of GF-677 hybrid peach rootstock. Acta Physiol Plant 28:21–26. doi:10.1007/s11738-006-0064-4 CrossRefGoogle Scholar
  14. Maes L, Vanden Berghe D, Germonprez N, Quirijnen L, Cos P, De Kimpe N, Van Puyvelde L (2004) In vitro and in vivo activities of a triterpenoid saponin extract (PX-6518) from the plant Maesa balansae against visceral leishmania species. Antimicrob Agents Chemother 48:130–136. doi:10.1128/AAC.48.1.130-136.2004 PubMedCrossRefGoogle Scholar
  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  16. Niino T, Sakai A (1992) Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87:199–206. doi:10.1016/0168-9452(92)90151-B CrossRefGoogle Scholar
  17. Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 96:12923–12928. doi:10.1073/pnas.96.22.12923 PubMedCrossRefGoogle Scholar
  18. Sakai A (2000) Development of cryopreservation techniques. In: FaT Engelmann H (ed), Cryopreservation of tropical germplasm. Current research progress and application. JIRCAS, Rome, pp 1–7Google Scholar
  19. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus-Sinensis Osb Var Brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33. doi:10.1007/BF00232130 CrossRefGoogle Scholar
  20. Schenk RU, Hildebrandt (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant-cell cultures. Can J Bot 50:199–204. doi:10.1139/b72-026 CrossRefGoogle Scholar
  21. Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351. doi:10.1093/jxb/erh276 PubMedCrossRefGoogle Scholar
  22. Sindambiwe JB, Balde AM, De Bruyne T, Pieters L, Van den Heuvel H, Claeys M, Van den Berghe DA, Vlietinck AJ (1996) Triterpenoid saponins from Maesa lanceolata. Phytochemistry 41:269–277. doi:10.1016/0031-9422(95)00552-8 PubMedCrossRefGoogle Scholar
  23. Sindambiwe JB, Calomme M, Geerts S, Pieters L, Vlietinck AJ, Vanden Berghe DA (1998) Evaluation of biological activities of triterpenoid saponins from Maesa lanceolata. J Nat Prod 61:585–590. doi:10.1021/np9705165 PubMedCrossRefGoogle Scholar
  24. Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243. doi:10.1016/j.jep.2004.05.016 PubMedCrossRefGoogle Scholar
  25. Teoh KH, Weathers PJ, Cheetham RD, Walcerz DB (1996) Cryopreservation of transformed (hairy) roots of Artemisia annua. Cryobiology 33:106–117. doi:10.1006/cryo.1996.0011 PubMedCrossRefGoogle Scholar
  26. Touno K, Yoshimatsu K, Shimomura K (2006) Characteristics of Atropa belladonna hairy roots cryopreserved by vitrification method. Cryo Letters 27:65–72PubMedGoogle Scholar
  27. Urbanczyk-Wochniak E, Sumner LW (2007) MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics 23:1418–1423. doi:10.1093/bioinformatics/btm040 PubMedCrossRefGoogle Scholar
  28. Volk GM, Harris JL, Rotindo KE (2006) Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology 52:305–308. doi:10.1016/j.cryobiol.2005.11.003 PubMedCrossRefGoogle Scholar
  29. Xue SH, Luo XJ, Wu ZH, Zhang HL, Wang XY (2008) Cold storage and cryopreservation of hairy root cultures of medicinal plant Eruca sativa Mill., Astragalus membranaceus and Gentiana macrophylla Pall. Plant Cell Tissue Organ Cult 92:251–260. doi:10.1007/s11240-007-9329-x CrossRefGoogle Scholar
  30. Yoshimatsu K (2000) Cryopreservation of medicinal plant resources: retention of biosynthetic capabilities in transformed cultures. In: FaT Engelmann H (ed) Cryopreservation of tropical germplasm. Current research progress and application. JIRCAS, Rome, pp 77–90Google Scholar
  31. Yoshimatsu K, Yamaguchi H, Shimomura K (1996) Traits of Panax ginseng hairy roots after cold storage and cryopreservation. Plant Cell Rep 15:555–560. doi:10.1007/BF00232452 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • E. Lambert
    • 1
  • A. Goossens
    • 2
    • 3
  • B. Panis
    • 4
  • M. C. Van Labeke
    • 1
  • D. Geelen
    • 1
  1. 1.Faculty of Bioscience Engineering, Department of Plant ProductionUniversity of GhentGhentBelgium
  2. 2.Department of Plant Systems BiologyFlanders Institute for BiotechnologyGhentBelgium
  3. 3.Faculty of Science, Department of Molecular GeneticsUniversity of GhentGhentBelgium
  4. 4.Faculty of Bioscience Engineering, Department of BiosystemsKU LeuvenHeverleeBelgium

Personalised recommendations