Germination and conversion of somatic embryos derived from mature Quercus robur trees: the effects of cold storage and thidiazuron

  • Teresa Martínez
  • Elena Corredoira
  • Silvia Valladares
  • Lorena Jorquera
  • Ana M. Vieitez
Original Paper


Somatic embryos of Quercus robur L. belonging to lines derived from mature trees were germinated in experiments designed to determine the effects of pregermination chilling and the temporary inclusion of thidiazuron (TDZ) in the germination medium. Germination response was evaluated in terms of the percentages of embryos exhibiting root-only elongation, shoot-only elongation, or both (conversion to plantlets). Conversion rates depended on genotype and were lower than those of oak zygotic embryonic axes germinated in vitro. Two months’ storage of somatic embryos at 4°C between maturation and germination treatments did not influence their conversion frequency, although root-only germination was promoted in the three embryogenic lines investigated. Addition of 0.01–5.0 µM TDZ to the germination medium for 7 or 18 days induced multiple shoot formation in the epicotyl region of germinating embryos, although the 18-day treatment was detrimental with TDZ concentrations of 0.5–5.0 µM. Exposure to 0.05–0.1 µM TDZ for 7 days increased the frequency of shoot-only elongation and decreased that of root-only elongation in embryogenic lines with both high and low conversion ability, but whereas the conversion rate of the hard-to-convert line Sainza was significantly increased, that of the readily converted line B-17 was negatively affected. As a result, with 0.1 µM TDZ the total potential plant recovery of Sainza (the conversion rate plus the percentage of embryos exhibiting shoot-only germination) was 64%, approximately the same as that of B-17. Shoots excised from shoot-only germinating embryos can be elongated and rooted by proven micropropagation procedures. An additional result was the finding that adventitious bud regeneration was induced on the cotyledons of TDZ treated embryos (69% with 0.5 µM TDZ), which may prove useful for genetic transformation. This study is the first to have shown that TDZ can increase the germination efficiency of oak somatic embryos.


Adventitious buds Multiple shoot formation Pedunculate oak Rooting Somatic embryogenesis 





α-Naphthaleneacetic acid


Murashige and Skoog medium





We thank Ayuntamientos de Caldas de Reis and Becerreá (Spain) for kindly providing the plant material. This research was partially supported by DGI, MEC (Spain) through the project AGL2006-01387/FOR.


  1. Andrade GM, Merkle SA (2005) Enhancement of American chestnut somatic seedling production. Plant Cell Rep 24:326–334. doi: 10.1007/s00299-005-0941-0 PubMedCrossRefGoogle Scholar
  2. Bates JE, Preece NE, Navarrete NE (1992) TDZ stimulates shoot organogenesis in white ash (Fraxinus americana L.). Plant Cell Tissue Organ Cult 31:21–29Google Scholar
  3. Bunn E, Senaratna T, Sivasithamparam K, Dixon KW (2005) In vitro propagation of Eucalyptus phylacis L. Johnson and K. Hill., a critically endangered relict from Western Australia. In Vitro Cell Dev Biol Plant 41:812–815. doi: 10.1079/IVP2005700 CrossRefGoogle Scholar
  4. Canhoto JM, Rama SC, Cruz GS (2006) Somatic embryogenesis and plant regeneration in carob (Ceratonia siliqua L.). In Vitro Cell Dev Biol Plant 42:514–519CrossRefGoogle Scholar
  5. Capuana M, Petrini G, Di Marco A, Giannini R (2007) Plant regeneration of common ash (Fraxinus excelsior L.) by somatic embryogenesis. In Vitro Cell Dev Biol Plant 43:101–110. doi: 10.1007/s11627-007-9030-0 Google Scholar
  6. Carra A, De Pascuale F, Ricci A, Carimi F (2006) Diphenylurea derivatives induce somatic embryogenesis in Citrus. Plant Cell Tissue Organ Cult 87:41–48. doi: 10.1007/s11240-006-9132-0 CrossRefGoogle Scholar
  7. Chalupa V (2000) In vitro propagation of mature trees of pedunculate oak (Quercus robur L.). J For Sci 46:537–542Google Scholar
  8. Corredoira E, Ballester A, Vieitez AM (2003) Proliferation, maturation and germination of Castanea sativa Mill. somatic embryos originated from leaf explants. Ann Bot (Lond) 92:129–136. doi: 10.1093/aob/mcg107 CrossRefGoogle Scholar
  9. Corredoira E, Valladares S, Vieitez AM, Ballester A (2008) Improved germination of somatic embryos and plant recovery of European chestnut. In Vitro Cell Dev Biol Plant 44:307–315CrossRefGoogle Scholar
  10. Cuenca B, San-José MC, Martínez TM, Ballester A, Vieitez AM (1999) Somatic embryogenesis from stem and leaf explants of Quercus robur L. Plant Cell Rep 18:538–543. doi: 10.1007/s002990050618 CrossRefGoogle Scholar
  11. Cuenca B, Ballester A, Vieitez AM (2000) In vitro adventitious bud regeneration from internode segments of beech. Plant Cell Tissue Organ Cult 60:213–220. doi: 10.1023/A:1006428717309 CrossRefGoogle Scholar
  12. Debnath SC (2006) Zeatin overcomes thidiazuron-induced inhibition of shoot elongation and promotes rooting in strawberry culture in vitro. J Hortic Sci Biotechnol 81:349–354Google Scholar
  13. Deng MD, Cornu D (1992) Maturation and germination of walnut somatic embryos. Plant Cell Tissue Organ Cult 28:195–202. doi: 10.1007/BF00055517 CrossRefGoogle Scholar
  14. Distabanjong K, Geneve RL (1997) Multiple shoot formation from normal and malformed somatic embryo explants of Eastern redbud (Cercis canadensis L.). Plant Cell Rep 16:334–338Google Scholar
  15. Dunstan DI, Tautorus TE, Thorpe TA (1995) Somatic embryogenesis in woody plants. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 471–538Google Scholar
  16. Fernández-Guijarro B, Celestino C, Toribio M (1995) Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber L. Plant Cell Tissue Organ Cult 41:99–106. doi: 10.1007/BF00051578 CrossRefGoogle Scholar
  17. García-Martín G, González-Benito ME, Manzanera JA (2001) Quercus suber L. somatic embryo germination and plant conversion: pretreatments and germination conditions. In Vitro Cell Dev Biol Plant 37:190–198. doi: 10.1007/s11627-001-0033-y CrossRefGoogle Scholar
  18. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta 107:167–170. doi: 10.1007/BF00387721 CrossRefGoogle Scholar
  19. Guthke J, Spethmann W (1993) Physiological and pathological aspects of long-term storage of acorns. Ann Sci For 50(suppl 1):384–387. doi: 10.1051/forest:19930742 CrossRefGoogle Scholar
  20. Halperin W (1995) In vitro embryogenesis: some historical issues and unresolved problems. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 1–16Google Scholar
  21. Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119. doi: 10.1007/BF01983223 CrossRefGoogle Scholar
  22. Ipekci Z, Gozukirmizi N (2003) Direct somatic embryogenesis and synthetic seed production from Paulownia elongata. Plant Cell Rep 22:16–24. doi: 10.1007/s00299-003-0650-5 PubMedCrossRefGoogle Scholar
  23. Jones MPA, Yi Z, Murch SJ, Saxena PK (2007) Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep 26:13–19. doi: 10.1007/s00299-006-0209-3 PubMedCrossRefGoogle Scholar
  24. Kim YW (2000) Somatic embryogenesis in Quercus acutissima. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 6. Kluwer Academic Publishers, Dordrecht, pp 671–685Google Scholar
  25. Langhansova L, Konrádová H, Vanĕk T (2004) Polyethyleneglycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep 22:725–730. doi: 10.1007/s00299-003-0750-2 PubMedCrossRefGoogle Scholar
  26. Madden JI, Jones CS, Auer CA (2005) Modes of regeneration in Pelargonium × hortorum (Geraniaceae) and three closely related species. In Vitro Cell Dev Biol Plant 41:37–46. doi: 10.1079/IVP2004605 CrossRefGoogle Scholar
  27. Martínez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46:182–189. doi: 10.1016/S0011-2240(03)00024-5 PubMedCrossRefGoogle Scholar
  28. Mauri PV, Manzanera JA (2004) Effect of abscisic acid and stratification on somatic embryo maturation and germination of holm oak (Quercus ilex L.). In Vitro Cell Dev Biol Plant 40:495–498. doi: 10.1079/IVP2004557 CrossRefGoogle Scholar
  29. Merkle SA, Battle PJ, Ware GO (2003) Factors influencing production of inflorescence-derived somatic seedlings of sweetgum. Plant Cell Tissue Organ Cult 73:95–99. doi: 10.1023/A:1022651406288 CrossRefGoogle Scholar
  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  31. Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275. doi: 10.1007/BF02822732 CrossRefGoogle Scholar
  32. Prewein C, Vagner M, Wilhelm E (2004) Changes in water status and proline and abscisic acid concentrations in developing somatic embryos of pedunculate oak (Quercus robur) during maturation and germination. Tree Physiol 24:1251–1257PubMedGoogle Scholar
  33. Puigdejarrols P, Celestino C, Suils M, Toribio M, Molinas M (2000) Histology of organogenic and embryogenic responses in cotyledons of somatic embryos of Quercus suber L. Int J Plant Sci 161:353–362. doi: 10.1086/314266 CrossRefGoogle Scholar
  34. Sánchez MC, San-José MC, Ballester A, Vieitez AM (1996) Requirements for in vitro rooting of Quercus robur and Q. rubra shoots derived from mature trees. Tree Physiol 16:673–680PubMedGoogle Scholar
  35. Sánchez MC, Martínez MT, Valladares S, Ferro E, Vieitez AM (2003) Maturation and germination of oak somatic embryos originated from leaf and stem explants: RAPD markers for genetic analysis of regenerants. J Plant Physiol 160:699–707. doi: 10.1078/0176-1617-00754 PubMedCrossRefGoogle Scholar
  36. San José MC, Ballester A, Vieitez AM (2001) Effect of thidiazuron on multiple shoot induction and plant regeneration from cotyledonary nodes of chestnut. J Hortic Sci 72:433–443Google Scholar
  37. Šunderlíková V, Wilhelm E (2002) High accumulation of legumin and Lea-like mRNAs during maturation is associated with increased conversion frequency of somatic embryos from pedunculate oak (Quercus robur L.). Protoplasma 220:97–103. doi: 10.1007/s00709-002-0025-8 PubMedCrossRefGoogle Scholar
  38. Thengane SR, Deodha SR, Bhosle SV, Rawal SK (2006) Repetitive somatic embryogenesis and plant regeneration in Garcinia indica Choiss. In Vitro Cell Dev Biol Plant 42:256–261. doi: 10.1079/IVP2006763 CrossRefGoogle Scholar
  39. Toribio M, Fernández C, Celestino C, Martínez MT, San-José MC, Vieitez AM (2004) Somatic embryogenesis in mature Quercus robur trees. Plant Cell Tissue Organ Cult 76:283–287. doi: 10.1023/B:TICU.0000009245.92828.26 CrossRefGoogle Scholar
  40. Tulecke W, McGranahan G (1985) Somatic embryogenesis and plant regeneration from cotyledons of walnut, Juglans regia L. Plant Sci 40:57–63. doi: 10.1016/0168-9452(85)90163-3 CrossRefGoogle Scholar
  41. Valladares S, Sánchez C, Martínez MT, Ballester A, Vieitez AM (2006) Plant regeneration through somatic embryogenesis from tissues of mature oak trees: true-to-type conformity of plantlets by RAPD analysis. Plant Cell Rep 25:879–886. doi: 10.1007/s00299-005-0108-z PubMedCrossRefGoogle Scholar
  42. Vilas S, González A, Rey H, Mroginski L (2003) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Melia azedarach (Meliaceae). In Vitro Cell Dev Biol Plant 39:283–287. doi: 10.1079/IVP2002377 Google Scholar
  43. Wilhelm E (2000) Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell Dev Biol Plant 36:349–357. doi: 10.1007/s11627-000-0062-y CrossRefGoogle Scholar
  44. Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 205–247Google Scholar
  45. Zezgouti R, Favre JM (1998) Histological effects of maturation treatment on somatic embryos of Quercus robur L. In: Ríordáin F (ed) Development of integrated systems for large-scale propagation of elite plants using in vitro techniques. COST 822. Official Publications of the European Communities, Luxembourg, pp 146–147Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Teresa Martínez
    • 1
  • Elena Corredoira
    • 1
  • Silvia Valladares
    • 1
  • Lorena Jorquera
    • 1
  • Ana M. Vieitez
    • 1
  1. 1.Instituto de Investigaciones Agrobiológicas de GaliciaCSICSantiago de CompostelaSpain

Personalised recommendations