Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 95, Issue 1, pp 79–88 | Cite as

Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents

  • Gloria Pinto
  • Sónia Silva
  • Yill-Sung Park
  • Lucinda Neves
  • Clara Araújo
  • Conceição Santos
Original Paper

Abstract

The low induction rates of somatic embryogenesis (SE) in Eucalyptus globulus hamper scaling up the process for commercialization. We analyzed the effectiveness of several media (MS, 1/2MS, B5, WPM, DKW and JADS) during SE induction and expression. MS and B5 were the best media for SE induction and embling regeneration. In general, MS was the best medium for expression, independently of the medium previously used during induction. Several anti-browning compounds (ascorbic acid, charcoal, DTE, DTT, PVP, PVPP and silver nitrate) were added to the expression medium (MS), but all decreased SE potential and only DTE, charcoal and silver nitrate reduced explant browning. When added only during the induction period, anti-browning agents reduced accumulation of phenolics but also severely reduced SE potential. Continuous exposure completely inhibited the SE response. The negative impact of anti-browning agents on SE potential raises a question about the role of production/accumulation of phenolics in the SE process.

Keywords

Eucalyptus Medium composition Phenolization Primary somatic embryos Woody species 

Abbreviations

B5

Gamborg medium

DKW

Driver Kuniyuki Walnut medium

DTE

Dithioerythritol

DTT

Dithiothreitol

MS

Murashige and Skoog medium

1/2MS

Half strength MS medium

NAA

α-Naphthalene acetic acid

PVP

Polivinylpirrolidone

PVPP

Polivinylpolypirrolidone

WPM

Woody Plant medium

MSWH

MS medium without growth regulators

Notes

Acknowledgments

The authors thank Celbi for providing the material used in this study and for supporting part of the project. The Portuguese Foundation for Science and Technology FCT/MCT project POCI/AGR/60672/2004 also supported part of the project. Thanks are also due to Armando Costa for technical assistance. The FCT supported Glória Pinto’s (FCT/SFRH/BPD/26434/2006) and Sónia Silva’s (SFRH/BD/32257/2006) fellowships.

References

  1. Alemanno L, Ramos T, Gargadenec A, Andary C, Ferriere N (2003) Localization and identification of phenolic compounds in Theobrama cacao L. somatic embryogenesis. Ann Bot (Lond) 92:613–623. doi: 10.1093/aob/mcg177 CrossRefGoogle Scholar
  2. Anthony JM, Senaratnal T, Dixon KW, Sivasithamparam K (2004) The role of antioxidants for initiation of somatic embryos with Conostephium pendulum (Ericaceae). Plant Cell Tissue Organ Cult 78:247–252. doi: 10.1023/B:TICU.0000025661.56250.b4 CrossRefGoogle Scholar
  3. Bandyopadhyay S, Cane K, Rasmussen G, Hamill JD (1999) Efficient plant regeneration from seedling explants of two commercially important temperate eucalypt species—Eucalyptus nitens and E globulus. Plant Sci 140(2):189–198. doi: 10.1016/S0168-9452(98)00221-0 CrossRefGoogle Scholar
  4. Benson EE (2000) Special symposium: in vitro plant recalcitrance. Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell Dev Biol Plant 36:163–170. doi: 10.1007/s11627-000-0032-4 Google Scholar
  5. Bonga JM, von Aderkas PM (1992) In vitro culture of trees. Kluwer Academic Publishers, DordrechtGoogle Scholar
  6. Canhoto JM, Lopes ML, Cruz GS (1999) Somatic embryogenesis and plant regeneration in myrtle (Myrtaceae). Plant Cell Tissue Organ Cult 57:13–21. doi: 10.1023/A:1006273128228 CrossRefGoogle Scholar
  7. Carraway DT, Merkle SA (1997) Plantlet regeneration from somatic embryos of American chestnut. Can J Res 27(11):1805–1812. doi: 10.1139/cjfr-27-11-1805 CrossRefGoogle Scholar
  8. Chauhan M, Kothar SL (2004) Optimization of nutrient levels in the medium increases the efficiency of callus induction and plant regeneration in recalcitrant Indian barley (Hordeum vulgare L) in vitro. In Vitro Cell Dev Biol Plant 40(5):520–527. doi: 10.1079/IVP2004565 CrossRefGoogle Scholar
  9. Close DC, Davies NW, Beadle CL (2001) Temporal variation of tannins (galloylglucoses), flavonols and anthocyanins in leaves of Eucalyptus nitens seedlings: implications for light attenuation and antioxidant activities. Aust J Plant Physiol 28(4):269–278Google Scholar
  10. Correia D, Gonçalves NA, Zarate do Couto HT, Ribeiro MC (1995) Efeito do meio de cultura líquido e sólido no crescimento e desenvolvimento de gemas de Eucalyptus grandis × Eucalyptus urophylla na multiplicação in vitro. IPEF 48(49):107–116Google Scholar
  11. Cousson A, Tran Thanh Van K (1993) Influence of ionic composition of the culture medium on de novo flower formation in tobacco thin cell layers. Can J Bot 71:506–511Google Scholar
  12. Driver JA, Kuniyuki AH (1984) In vitro propagation of paradox walnut rootstock. Hortic Sci 19:507–509Google Scholar
  13. Fisichella M, Silvi E, Morini S (2000) Regeneration of somatic embryos and roots from quince leaves cultured on media with different macroelement composition. Plant Cell Tissue Organ Cult 63:101–107. doi: 10.1023/A:1006407803660 CrossRefGoogle Scholar
  14. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L). Heynh Plant Growth Regul 43(1):27–47. doi: 10.1023/B:GROW.0000038275.29262.fb CrossRefGoogle Scholar
  15. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi: 10.1016/0014-4827(68)90403-5 PubMedCrossRefGoogle Scholar
  16. Gribble K, Conroy J, Holford P, Milham P (2002) In vitro uptake of minerals by Gypsophila paniculata L. and hybrid eucalypts and relevance to media mineral formulation. Aust J Bot 50:1–11. doi: 10.1071/BT02018 CrossRefGoogle Scholar
  17. Gupta PK, Mehta UJ, Mascarenhas AF (1983) A tissue culture method for rapid clonal propagation of mature trees of Eucalyptus torelliana and Eucalyptus camaldulensis. Plant Cell Rep 2:296–299. doi: 10.1007/BF00270185 CrossRefGoogle Scholar
  18. Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110. doi: 10.1007/s10725-005-3478-x CrossRefGoogle Scholar
  19. Kong L, Yeung EC (1995) Effects of silver nitrate and polyethylene glycol on white spruce (Picea glauca) somatic embryo development: enhancing cotyledonary embryo formation and endogenous ABA content. Physiol Plant 93:298–304. doi: 10.1111/j.1399-3054.1995.tb02232.x CrossRefGoogle Scholar
  20. Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of Mountain Laurel, Kalmia latifolia, by shoot tip culture. Int Plant Prop Soc Proc 30:421–427Google Scholar
  21. MacKay JJ, Becwar MR, Park YS, Coederro JP, Pullman GS (2006) Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genet Genomes 2:1–9. doi: 10.1007/s11295-005-0020-2 CrossRefGoogle Scholar
  22. Magnaval C, Noirotm M, Verdeil JL, Blattes A, Huet C, Grosdemange F et al (1997) Specific nutritional requirements of coconut calli (Cocos nucifera L.) during somatic embryogenesis induction. J Plant Physiol 15:719–728Google Scholar
  23. Malabadi RB, Van Staden J (2005) Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cell Dev Biol Plant 41:181–186. doi: 10.1079/IVP2004586 CrossRefGoogle Scholar
  24. Meijer EGM, Brown DCW (1987) Role of exogenous reduced nitrogen and sucrose in rapid high frequency somatic embryogenesis in Medicago sativa. Plant Cell Tissue Organ Cult 10:11–19. doi: 10.1007/BF00037492 CrossRefGoogle Scholar
  25. Merkle AS, Nairn CJ (2005) Hardwood tree biotechnology. In Vitro Cell Dev Biol Plant 41:602–619. doi: 10.1079/IVP2005687 CrossRefGoogle Scholar
  26. Muralidharan EM, Mascarenhas AF (1987) In vitro plantlet formation by organogenesis in E. camaldulensis and by somatic embryogenesis in Eucalyptus citriodora. Plant Cell Rep 6:256–259. doi: 10.1007/BF00268494 CrossRefGoogle Scholar
  27. Muralidharan EM, Gupta PK, Mascarenhas AF (1989) Plantlet production through high frequency somatic embryogenesis in long term cultures of Eucalyptus citriodora. Plant Cell Rep 8:41–43. doi: 10.1007/BF00735775 CrossRefGoogle Scholar
  28. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  29. Nas MN, Read PE (2004) A hypothesis for the development of a defined tissue culture medium of higher plants and micropropagation of hazelnuts. Sci Hortic (Amsterdam) 101(1–2):189–200. doi: 10.1016/j.scienta.2003.10.004 CrossRefGoogle Scholar
  30. Nugent G, Chandler S, Whiteman P, Stevenson T (2001) Somatic embryogenesis in Eucalyptus globulus. Plant Cell Tissue Organ Cult 67:85–88. doi: 10.1023/A:1011691110515 CrossRefGoogle Scholar
  31. Pan MJ, van Staden J (1998) The use of charcoal in in vitro culture—a review. Plant Growth Regul 26:155–163. doi: 10.1023/A:1006119015972 CrossRefGoogle Scholar
  32. Park YS, Barret D, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34:231–239. doi: 10.1007/BF02822713 CrossRefGoogle Scholar
  33. Park YS, Pond SE, Bonga JM (1993) Initiation of somatic embryogenesis in with spruce (Picea glauca): genetic control, culture treatment effects, and implications for tree breeding. Theor Appl Genet 86:427–436. doi: 10.1007/BF00838557 CrossRefGoogle Scholar
  34. Pinto G, Santos C, Neves L, Araújo C (2002) Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep 21:208–213. doi: 10.1007/s00299-002-0505-5 CrossRefGoogle Scholar
  35. Pinto G, Loureiro J, Lopes T, Santos C (2004) Analysis of genetic stability of Eucalyptus globulus Labill. somatic embryos by flow cytometry. Theor Appl Genet 109:580–587. doi: 10.1007/s00122-004-1655-3 PubMedCrossRefGoogle Scholar
  36. Pinto G, Silva S, Coutinho J, Araujo C, Neves L, Santos C (2006) Importance of media mineral composition on the induction of somatic embryogenesis in Eucalyptus globulus Labill. 2º Simposio Iberoamericano de Eucalyptus globulus. 17–20 October, Pontevedra, SpainGoogle Scholar
  37. Pinto G, Park Y-S, Neves L, Araujo C, Santos C (2008) Genetic control of somatic embryogenesis in Eucalyptus globulus Labill. Plant Cell Rep 27:1093–1101. doi: 10.1007/s00299-008-0532-y PubMedCrossRefGoogle Scholar
  38. Poke FS, Vaillancourt RE, Potts BM, Reid JB (2005) Genomic research in Eucalyptus. Genetica 125:79–101. doi: 10.1007/s10709-005-5082-4 PubMedCrossRefGoogle Scholar
  39. Prakash MG, Gurumurthi K (2005) Somatic embryogenesis and plant regeneration in Eucalyptus tereticornis Sm. Curr Sci 88:1311–1316Google Scholar
  40. Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. In Vitro Cell Dev Biol Plant 38:116–124. doi: 10.1079/IVP2001269 CrossRefGoogle Scholar
  41. Ruggini E (1984) In vitro-propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hortic (Amsterdam) 24:123–134. doi: 10.1016/0304-4238(84)90143-2
  42. Santos KGB, Mundstock E, Bodanese-Zanetti MH (1997) Genotype-specific normalization of soybean somatic embryogenesis through the use of an ethylene inhibitor. Plant Cell Rep 16:859–864. doi: 10.1007/s002990050334 CrossRefGoogle Scholar
  43. Steger MM, Preece JE (2003) The influence of source tree on somatic embryogenesis from eastern black walnut (Juglans nigra) immature cotyledons. Acta Hortic 625:249–253Google Scholar
  44. Tazawa M, Reinert J (1969) Extracellular and intracellular chemical environments in relation to embryogenesis in vitro. Protoplasma 68:157–173. doi: 10.1007/BF01247902 PubMedCrossRefGoogle Scholar
  45. Termignoni R, Wang PJ, Hu CY (1996) Somatic embryo induction in Eucalyptus dunnii. Plant Cell Tissue Organ Cult 45:129–132. doi: 10.1007/BF00048755 CrossRefGoogle Scholar
  46. Thomas P, Ravindra MB (1997) Shoot-tip culture in mango: influence of medium, genotype, explant factors, season and decontamination treatments on phenolic exudation, explant survival and axenic culture establishment. J Hortic Sci 72:713–722Google Scholar
  47. Von Arnold S (1982) Factors influencing formation, development and rooting of adventitious shoots from embryos of Picea abies L. Karst. Plant Sci Lett 27:275–287. doi: 10.1016/0304-4211(82)90130-4 CrossRefGoogle Scholar
  48. Von Aderkas PV, Label P, Lelu M-A (2002) Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch. Tree Physiol 22:431–434Google Scholar
  49. Watt MP, Blakeway F, Cresswell CF, Harman B (1991) Somatic embryogenesis in Eucalyptus grandis. S Afr For J 157:59–65Google Scholar
  50. Watt MP, Blakeway FC, Termignoni R, Jain SM (1999) Somatic embryogenesis in Eucalyptus grandis and E. dunnii. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 5. Kluwer, UK, pp 63–78Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gloria Pinto
    • 1
  • Sónia Silva
    • 1
  • Yill-Sung Park
    • 2
  • Lucinda Neves
    • 3
  • Clara Araújo
    • 3
  • Conceição Santos
    • 1
  1. 1.CESAM & Department of Biology, Laboratory of Biotechnology and CytomicsUniversity of AveiroAveiroPortugal
  2. 2.Natural Resources CanadaCanadian Forestry Service—Canadian Wood Fibre CentreFrederictonCanada
  3. 3.Silvicaima SA Constância SulConstanciaPortugal

Personalised recommendations