Plant Cell, Tissue and Organ Culture

, Volume 95, Issue 1, pp 69–78 | Cite as

Factors affecting maintenance, proliferation, and germination of secondary somatic embryos of Eucalyptus globulus Labill

  • Gloria Pinto
  • Yill-Sung Park
  • Sónia Silva
  • Lucinda Neves
  • Clara Araújo
  • Conceição Santos
Original Paper

Abstract

The described protocol for repetitive somatic embryogenesis (SE) in Eucalyptus globulus produced more somatic embryos than the primary SE protocol. Primary somatic embryos (induced on MS3NAA) were transferred to the same medium, leading to new cycles of somatic embryos, for at least 2 years. The influence of medium (MS and B5), plant growth regulators (auxins and cytokinins), and light on secondary SE was tested. The MS medium without growth regulators (MSWH) was more efficient for cotyledonary embryo formation and germination than the B5 medium. Reducing auxin (NAA) levels increased the proliferation of globular somatic embryos and allowed SE competence to be maintained on medium free of plant growth regulators. The addition of two cytokinins (BAP and KIN) to the MS medium did not improve proliferation of globular secondary embryos, but was crucial during later stages of the SE process (germination and conversion). Data also show that light may influence the quality of the process, depending on its stage. Darkness should be maintained until the cotyledonary stage is reached, after which exposure to light is recommended.

Keywords

Embryogenic competence Eucalyptus Growth regulators Media composition Secondary somatic embryogenesis 

Abbreviations

B5

Gamborg medium

BAP

6-Benzylaminopurine

KIN

Kinetin

MS

Murashige and Skoog medium

NAA

α-Naphthalene acetic acid

MSWH

MS medium without growth regulators

SE

Somatic embryogenesis

ZE

Zygotic embryos

PGRs

Plant growth regulators

Notes

Acknowledgements

Authors thank Celbi for providing the material used in this study and for supporting part of the project. The Portuguese Foundation for Science and Technology FCT/MCT project POCI/AGR/60672/2004 also supported part of the project. Thanks are also due to José Dias and Armando Costa for technical assistance. FCT supported Glória′s (FCT/SFRH/BPD/26434/2006), Sónia′s (SFRH/BD/32257/2006) fellowships.

References

  1. Berlyn GP, Bock RC, Renfroc MH (1986) Tissue culture and the propagation and genetic improvement of conifers. Tree Physiol 1:227–240PubMedGoogle Scholar
  2. Boulay M (1987) Recherches preliminaires sur l’embryogénèse somatique d’Eucalyptus gunnii. Ann Rech silvi Assoc. Cellulose:23–37.Google Scholar
  3. Canhoto JM, Mesquita JF, Cruz GS (1996) Ultrastructural changes in cotyledons of pineapple Guava (Myrtaceae) during somatic embryogenesis. Ann Bot (Lond) 78:513–521. doi: 10.1006/anbo.1996.0149 CrossRefGoogle Scholar
  4. Canhoto JM, Lopes ML, Cruz GS (1999) Somatic embryogenesis and plant regeneration in myrtle (Myrtaceae). Plant Cell Tissue Organ Cult 57:13–21. doi: 10.1023/A:1006273128228 CrossRefGoogle Scholar
  5. Corredoira E, Ballester A, Vieitez AM (2003) Proliferation, maturation and germination of Castanea sativa Mill. Somatic embryos originated from leaf explants. Ann Bot (Lond) 92:129–136. doi: 10.1093/aob/mcg107 CrossRefGoogle Scholar
  6. Fernandez-Guijarro B, Celestino C, Toribio M (1995) Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber. Plant Cell Tissue Organ Cult 41:99–106CrossRefGoogle Scholar
  7. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43(1):27–47. doi: 10.1023/B:GROW.0000038275.29262.fb CrossRefGoogle Scholar
  8. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi: 10.1016/0014-4827(68)90403-5 PubMedCrossRefGoogle Scholar
  9. Hernández I, Celestino C, Alegre J, Toribio M (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis II Plant regeneration from selected cork oak trees. Plant Cell Rep 21:765–770PubMedGoogle Scholar
  10. Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110. doi: 10.1007/s10725-005-3478-x CrossRefGoogle Scholar
  11. Kärkönen A (2000) Anatomical study of zygotic and somatic embryos of Tilia cordata. Plant Cell Tissue Organ Cult 61:205–214. doi: 10.1023/A:1006455603528 CrossRefGoogle Scholar
  12. Martinelli L, Candioli E, Costa D, Poletti V (2001) Morphogenic competence of Vitis rupestris S. secondary somatic embryos with a long culture history. Plant Cell Rep 20:279–284. doi: 10.1007/s002990100339 Google Scholar
  13. Merkle SA (1995) Strategies for dealing with limitations of somatic embryogenesis in hardwood trees. Plant Tissue Cult Biotechnol 1:112–121Google Scholar
  14. Muralidharan EM, Mascarenhas AF (1995) Somatic embryogenesis in Eucalyptus. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 2—angiosperms. Kluwer Academic Publishers, Dordrecht, pp 23–40Google Scholar
  15. Muralidharan EM, Gupta PK, Mascarenhas AF (1989) Plantlet production through high frequency somatic embryogenesis im long term cultures of Eucalyptus citriodora. Plant Cell Rep 8:41–43. doi: 10.1007/BF00735775 CrossRefGoogle Scholar
  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  17. Nair RR, Gupta SD (2006) High- frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.). Plant Cell Rep 24:600–707. doi: 10.1007/s00299-005-0016-2 CrossRefGoogle Scholar
  18. Neves LO, Duque SRL, de Almeida JS, Fevereiro PS (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaerth cv. Jemalong. Plant Cell Rep 18:398–405. doi: 10.1007/s002990050593 CrossRefGoogle Scholar
  19. Nugent G, Chandler S, Whiteman P, Stevenson T (2001) Somatic embryogenesis in Eucalyptus globulus. Plant Cell Tissue Organ Cult 67:85–88. doi: 10.1023/A:1011691110515 CrossRefGoogle Scholar
  20. Oller J, Celestino C, López-Vela D, Alegre J, Toval G, Toribio M (2006) Induction of somatic embryogenesis in mature zygotic embryos of Eucalyptus globulus Labill. 2nd Simposio Iberoamericano de Eucalyptus globulus. Pontevedra, Spain, 17–20 OctoberGoogle Scholar
  21. Parra R, Amo-Marco JB (1998) Secondary somatic embryogenesis and plant regeneration in myrtle (Myrtus communis L.). Plant Cell Rep 18:325–330. doi: 10.1007/s002990050580 CrossRefGoogle Scholar
  22. Pinto G, Santos C, Neves L, Araújo C (2002a) Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep 21:208–213. doi: 10.1007/s00299-002-0505-5 CrossRefGoogle Scholar
  23. Pinto G, Valentim H, Costa A, Castro S, Santos C (2002b) Somatic embryogenesis and plant regeneration from leaf calli of mature Quercus suber L. plants. In Vitro Cell Dev Biol Plant 6(4):569–572. doi: 10.1079/IVP2002352 CrossRefGoogle Scholar
  24. Pinto G, Loureiro J, Lopes T, Santos CV (2004a) Analysis of genetic stability of Eucalyptus globulus Labill. somatic embryos by flow cytometry. Theor Appl Genet 109:580–587. doi: 10.1007/s00122-004-1655-3 PubMedCrossRefGoogle Scholar
  25. Pinto G, Silva S, Santos C, Neves L, Araújo C (2004b) Somatic embryogenesis of Eucalyptus globulus labill. and assessement of genetic stability. In: Borralho NMG, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M (eds) Eucalyptus in a changing world. Proceedings IUFRO Conference, Aveiro, Portugal, pp 543–544, 11–15 OctoberGoogle Scholar
  26. Pinto G, Silva S, Park Y-S, Neves L, Araújo C, Santos C (2008a) Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-008-9418-5 Google Scholar
  27. Pinto G, Park Y-S, Neves L, Araujo C, Santos C (2008b) Genetic control of somatic embryogenesis in Eucalyptus globulus Labill. Plant Cell Rep 27:1093–1101. doi: 10.1007/s00299-008-0532-y PubMedCrossRefGoogle Scholar
  28. Prakash MG, Gurumurthi K (2005) Somatic embryogenesis and plant regeneration in Eucalyptus tereticornis Sm. Curr Sci 88(8):1311–1316Google Scholar
  29. Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107. doi: 10.1007/BF00022463 CrossRefGoogle Scholar
  30. Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. In Vitro Cell Dev Biol Plant 38:116–124. doi: 10.1079/IVP2001269 CrossRefGoogle Scholar
  31. Von Arnold S, Sabala I, Bozhkov P, Dyachaok J, Filanova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249. doi: 10.1023/A:1015673200621 CrossRefGoogle Scholar
  32. Watt MP, Blakeway FC, Termignoni R, Jain SM (1999) Somatic embryogenesis in Eucalyptus grandis and E. dunnii. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 5. Kluwer Academic Publishers, Dordrecht, pp 63–78Google Scholar
  33. Yusuf A, Tyagi RK, Malik SK (2001) Somatic embryogenesis and plantlet regeneration from leaf segments of Piper colubrinum. Plant Cell Tissue Organ Cult 65:255–258. doi: 10.1023/A:1010678609606 CrossRefGoogle Scholar
  34. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gloria Pinto
    • 1
  • Yill-Sung Park
    • 2
  • Sónia Silva
    • 1
  • Lucinda Neves
    • 3
  • Clara Araújo
    • 3
  • Conceição Santos
    • 1
  1. 1.Department of Biology, Laboratory of Biotechnology and Cytomics, CESAMUniversity of AveiroAveiroPortugal
  2. 2.Natural Resources Canada, Canadian Forestry Service – Canadian Wood Fibre CentreFrederictonCanada
  3. 3.Silvicaima SA Constância SulConstanciaPortugal

Personalised recommendations