Plant Cell, Tissue and Organ Culture

, Volume 94, Issue 3, pp 291–298 | Cite as

Determination of content of metallothionein and low molecular mass stress peptides in transgenic tobacco plants

  • Vaclav Diopan
  • Violetta Shestivska
  • Vojtech Adam
  • Tomas Macek
  • Martina Mackova
  • Ladislav Havel
  • Rene Kizek
Original Paper


Phytoremediation is a process that utilizes plants to remove, transfer, stabilize, or destroy pollutants in soil, sediment, and groundwater. Plants used for such purposes have several requirements. Genetic engineering these plants could be an effective tool used to acquire features needed for such purposes within a substantial amount of time. This paper aims to utilize electrochemical techniques to analyze transgenic tobacco and, thus, to reveal their heavy metals phytoremediation potential. Total thiol and metallothionein (MT) quantities were determined in the control and transgenic tobacco plants. The total content of thiols in transgenic plants varied within the range of 561 to 1,671 μg g−1. Furthermore, the determination of MT was done on transgenic tobacco plants. The level of human MT in transgenic tobacco plants varied between 25 and 95 μg g−1. However, a plant cell protects itself by synthesizing low molecular mass thiols such as reduced glutathione and phytochelatins to protect itself against heavy metals toxicity. The most important thiols, cysteine (Cys), glutathione (GSH), oxidised glutathione (GSSG) and phytochelatin 2 (PC2), were determined in the non-transgenic and transgenic tobacco plants by high performance liquid chromatography with electrochemical detection. Tobacco plants synthesizing the highest amount of metallothionein have the highest basal level of phytochelatin 2 as well as reduced glutathione and free cysteine. It clearly follows from the results obtained that the biosynthesis of particular thiols is mutually linked, which contributes to a better protection of a transgenic plant against heavy metals effects.


Metallothionein Tobacco Nicotiana tabacum Thiols Phytoremediation Electrochemical detection Brdicka reaction Voltammetry Liquid chromatography 





Differential pulse voltammetry


Adsorptive transfer stripping






Reduced glutathione


Oxidised glutathione


  1. Athar R, Ahmad M (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living azotobacter. Water Air Soil Pollut 138(1–4):165–180CrossRefGoogle Scholar
  2. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719PubMedCrossRefGoogle Scholar
  3. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  4. Daniel P, Gyori Z (2000) Effect of cadmium on the development of maize plants. Novenytermeles 49(4):405–412Google Scholar
  5. Francova K, Macek T, Demnerova K, Mackova M (2001) Transgenic plants–a potential tool for decontamination of environmental pollutants. Chem Listy 95(10):630–637Google Scholar
  6. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins–the principal heavy-metal complexing peptides of higher-plants. Science 230(4726):674–676PubMedCrossRefGoogle Scholar
  7. Henry RB, Liu J, Choudhuri S, Klaassen CD (1994) Species variation in hepatic metallothionein. Toxicol Lett 74(1):23–33PubMedCrossRefGoogle Scholar
  8. Kizek R, Vacek J, Trnkova L, Klejdus B, Havel L (2004) Application of catalytic reactions on a mercury electrode for electrochemical detection of metallothioneins. Chem Listy 98(4):166–173Google Scholar
  9. Kotrba P, Macek T, Ruml T (1999) Heavy metal-binding peptides and proteins in plants. A review Collect Czech Chem Commun 64(7):1057–1086CrossRefGoogle Scholar
  10. Leopold I, Gunther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50(8):1323–1328CrossRefGoogle Scholar
  11. Macek T, Mackova M, Pavlikova D, Szakova J, Truksa M, Cundy S, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22(1–2):101–106CrossRefGoogle Scholar
  12. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760PubMedCrossRefGoogle Scholar
  13. Mikelova R, Baloun J, Petrlova J, Adam V, Havel L, Petrek H, Horna A, Kizek R (2007) Electrochemical determination of Ag-ions in environment waters and their action on plant embryos. Bioelectrochemistry 70(2):508–518PubMedCrossRefGoogle Scholar
  14. Palmiter RD (1994) Regulation of metallothionein genes by heavy-metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, Mtf-1. Proc Natl Acad Sci USA 91(4):1219–1223PubMedCrossRefGoogle Scholar
  15. Pavlikova D, Macek T, Mackova M, Sura M, Szakova J, Tlustos P (2004a) The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ 50(12):513–517Google Scholar
  16. Pavlikova D, Macek T, Mackova M, Szakova J, Balik J (2004b) Cadmium tolerance and accumulation in transgenic tobacco plants with a yeast metallothionein combined with a polyhistidine tail. Int Biodeterior Biodegrad 54(2–3):233–237CrossRefGoogle Scholar
  17. Petrlova J, Mikelova R, Stejskal K, Kleckerova A, Zitka O, Petrek J, Havel L, Zehnalek J, Adam V, Trnkova L, Kizek R (2006a) Simultaneous determination of eight biologically active thiol compounds using gradient elution-liquid chromatography with coul-array detection. J Sep Sci 29(8):1166–1173PubMedCrossRefGoogle Scholar
  18. Petrlova J, Potesil D, Mikelova R, Blastik O, Adam V, Trnkova L, Jelen F, Prusa R, Kukacka J, Kizek R (2006b) Attomole voltammetric determination of metallothionein. Electrochim Acta 51(24):5112–5119CrossRefGoogle Scholar
  19. Potesil D, Petrlova J, Adam V, Vacek J, Klejdus B, Zehnalek J, Trnkova L, Havel L, Kizek R (2005) Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J Chromatogr A 1084(1–2):134–144PubMedCrossRefGoogle Scholar
  20. Salt DE, Blaylock M, Kumar N, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation–a novel strategy for the removal of toxic metals from the environment using plants. Bio-Technology 13(5):468–474PubMedGoogle Scholar
  21. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Molec Biol 49:643–668CrossRefGoogle Scholar
  22. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753PubMedCrossRefGoogle Scholar
  23. Stroinski A (1999) Some physiological and biochemical aspects of plant resistance to cadmium effect. I. Antioxidative system. Acta Physiol Plant 21(2):175–188CrossRefGoogle Scholar
  24. Supalkova V, Huska D, Diopan V, Hanustiak P, Zitka O, Stejskal K, Baloun J, Pikula J, Havel L, Zehnalek J, Adam V, Trnkova L, Beklova M, Kizek R (2007a) Electroanalysis of plant thiols. Sensors 7(6):932–959CrossRefGoogle Scholar
  25. Supalkova V, Petrek J, Baloun J, Adam V, Bartusek K, Trnkova L, Beklova M, Diopan V, Havel L, Kizek R (2007b) Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium(II) and lead(II) ions. Sensors 7(5):743–759CrossRefGoogle Scholar
  26. Trnkova L, Kizek R, Vacek J (2002) Catalytic signal of rabbit liver metallothionein on a mercury electrode: a combination of derivative chronopotentiometry with adsorptive transfer stripping. Bioelectrochemistry 56(1–2):57–61PubMedCrossRefGoogle Scholar
  27. Volesky B, Holan ZR (1995) Biosorption of heavy-metals. Biotechnol Prog 11(3):235–250PubMedCrossRefGoogle Scholar
  28. Zimmermann T, Zeizinger M, Burda JV (2005) Cisplatin interaction with cysteine and methionine, a theoretical DFT study. J Inorg Biochem 99(11):2184–2196PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Vaclav Diopan
    • 1
    • 2
  • Violetta Shestivska
    • 1
    • 2
  • Vojtech Adam
    • 2
    • 3
  • Tomas Macek
    • 4
  • Martina Mackova
    • 5
  • Ladislav Havel
    • 1
  • Rene Kizek
    • 2
  1. 1.Department of Plant Biology, Faculty of AgronomyMendel University of Agriculture and ForestryBrnoCzech Republic
  2. 2.Department of Chemistry and Biochemistry, Faculty of AgronomyMendel University of Agriculture and ForestryBrnoCzech Republic
  3. 3.Department of Animal Nutrition and Forage Production, Faculty of AgronomyMendel University of Agriculture and ForestryBrnoCzech Republic
  4. 4.Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech RepublicPraha 6Czech Republic
  5. 5.Institute of Chemical TechnologyPrague 6Czech Republic

Personalised recommendations