Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 92, Issue 2, pp 183–195 | Cite as

MiniMax, a new diminutive Glycine max genotype with a rapid life cycle, embryogenic potential and transformation capabilities

  • Vincent P. KlinkEmail author
  • Margaret H. MacDonald
  • Veronica E. Martins
  • Soo-Chul Park
  • Kyung-Hwan Kim
  • So-Hyeon Baek
  • Benjamin F. Matthews
Original Paper

Abstract

We developed Glycine max cv MiniMax (PI643148) that has a rapid life cycle, short stature and characteristic simple sequence repeat (SSR) markers that could make it useful for mutant screening, functional genomics, genetic mapping and other studies involving soybeans. We demonstrate that MiniMax is able to make somatic embryos (SEs) that rapidly develop into plantlets. Thus, the rapid cycling habit carries over into aspects of plant regeneration. Chimaeras (having transformed roots with untransformed aerial stocks) have been produced rapidly under non-axenic conditions using Agrobacterium rhizogenes-mediated transformation. Part of these experiments involved the engineering an enhanced green fluorescent protein (eGFP) reporter cassette outside the multi-cloning site of a plant expression vector, permitting non-invasive visual screening of the transformed roots. The rapid cycling growth habit of MiniMax, its ability to efficiently generate SEs and ability to be transformed should prove useful for basic aspects of G. max molecular and genetic research.

Keywords

MiniMax Glycine max Somatic embryogenesis 

Abbreviations

MG

Maturity group

SCN

Soybean cyst nematode

SSR

Simple sequence repeat

GUS

β-glucuronidase

eGFP

Enhanced green fluorescent protein

FMV sgt

Figwort mosaic virus sub-genomic transcript

Notes

Acknowledgements

The authors thank Prakash Arelli, USDA-ARS-MSA, Crop Genetics and Production Research Unit, 605 Airways Blvd., Jackson, TN, 38301 for the H. glycines race studies in G. max cv MiniMax. The authors thank Hunter Beard for excellent technical support. We also thank Dr. Wayne Parrott (University of Georgia) for technical assistance during the development of the plant transformation procedures. This work was supported by the United Soybean Board under grant 5214. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture.

References

  1. Alkharouf NW, Klink VP, Matthews BF (2007) Identification of Heterodera glycines (soybean cyst nematode [SCN]) cDNA sequences with high identity to those of Caenorhabditis elegans having lethal mutant or RNAi phenotypes. Exp Parasitol 115:247–258PubMedCrossRefGoogle Scholar
  2. Bailey MA, Boerma HR, Parrott WA (1993) Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell Dev B 29P:102–108CrossRefGoogle Scholar
  3. Bechtold N, Ellis J, Pelletier G (1993) In Planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris, Sciences de la vie/Life Sciences 316:1194–1199Google Scholar
  4. Bertioli DJ, Smoker M, Burrows PR (1999) Nematode-responsive activity of the cauliflower mosaic virus 35S promoter and its subdomains. Mol Plant Microbe Interact 12:189–196CrossRefGoogle Scholar
  5. Bhattacharyya S, Dey N, Maiti IB (2002) Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90:47–62PubMedCrossRefGoogle Scholar
  6. Byrd DW Jr, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 15:142–143Google Scholar
  7. Cheon CI, Lee NG, Siddique AB et al (1993) Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12:4125–4135PubMedGoogle Scholar
  8. Cho HJ, Farrand SK, Noel GR et al (2001) High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204CrossRefGoogle Scholar
  9. Collier R, Fuchs B, Walter N et al (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457PubMedCrossRefGoogle Scholar
  10. Crane C, Wright E, Dixon RA et al (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223:1344–1354PubMedCrossRefGoogle Scholar
  11. Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396PubMedCrossRefGoogle Scholar
  12. Frantz JM, Bugbee B (2004) Anaerobic conditions improve germination of a gibberellic acid deficient rice. Crop Sci 42:651–654CrossRefGoogle Scholar
  13. Frantz JM, Pinnock D, Klassen S et al (2004) Characterizing the environmental response of a gibberellic acid-deficient rice for use as a model crop. Agronomy J 96:1172–1181CrossRefGoogle Scholar
  14. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  15. Haas JH, Moore LW, Ream W et al (1995) Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61:2879–2884PubMedGoogle Scholar
  16. Haseloff J, Siemering KR, Prasher DC et al (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127PubMedCrossRefGoogle Scholar
  17. Hinchee MAW, Connor-Ward DV, Newell CA et al (1988) Production of transgenic soybean plants using Agrobacterium-mediated gene transfer. Bio/Technology 6:915–922CrossRefGoogle Scholar
  18. Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877PubMedCrossRefGoogle Scholar
  19. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  20. Klink VP, Overall CC, Alkharouf N et al (2007a) A comparative microarray analysis of an incompatible and compatible disease response by soybean (Glycine max) to soybean cyst nematode (Heterodera glycines) infection. Planta 226:1423–1447PubMedCrossRefGoogle Scholar
  21. Klink VP, Overall CC, Alkharouf N et al (2007b) Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean roots infected by soybean cyst nematode (Heterodera glycines). Planta 226:1389–1409PubMedCrossRefGoogle Scholar
  22. Ko T-S, Nelson RL, Korban SS (2004) Screening multiple soybean cultivars (MG 00 to MG VIII) for somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons. Crop Sci 44:1825–1831CrossRefGoogle Scholar
  23. Leutwiller LS, Hough-Evans BR, Meyerowitz EM (1984) The DNA of Arabidopsis thaliana. Mol Gen Genet 194:15–23CrossRefGoogle Scholar
  24. Limpens E, Ramos J, Franken C et al (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992PubMedCrossRefGoogle Scholar
  25. Marti E, Gisbert C, Bishop GJ et al (2006) Genetic and physiological characterization of tomato cv. Micro-Tom. J Exp Bot 57:2037–2047PubMedCrossRefGoogle Scholar
  26. Matthews BF, MacDonald MH, Song Q-J et al (2007) Registration of “MiniMax” soybean. J Plant Registr 1:1–2Google Scholar
  27. Meissner R, Jacobson Y, Melamed S et al (1997) A new model system for tomato genetics. Plant J 12:1465–1472CrossRefGoogle Scholar
  28. Meissner R, Chague V, Zhu Q et al (2000) Technical advance: a high throughput system for transposon tagging and promoter trapping in tomato. Plant J 22:265–274PubMedCrossRefGoogle Scholar
  29. Meurer CA, Dinkins RD, Redmond CT et al (2001) Embryogenic response of multiple soybean [Glycine max (L.) Merr.] cultivars across three locations. In Vitro Cell Dev Biol Plant 37:62–67CrossRefGoogle Scholar
  30. Murashige T., Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  31. Orzaez D, Mirabel S, Wieland WH et al (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140:3–11PubMedCrossRefGoogle Scholar
  32. Owens LD, Cress DE (1985) Genotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids. Plant Physiol 77:87–94PubMedGoogle Scholar
  33. Parrott WA, Hoffman LM, Hildebrand DF et al (1989) Recovery of primary transformants of soybean. Plant Cell Rep 7:615–617Google Scholar
  34. Ranch JP, Oglesby L, Zielinski AC (1986) Plant regeneration from tissue cultures of soybean by somatic embryogenesis. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Academic Press, New York, pp 97–110Google Scholar
  35. Rao Arelli AP (1994) Inheritance of resistance to Heterodera glycines Race 3 in soybean accessions. Plant Dis 78:898–900CrossRefGoogle Scholar
  36. Santarém ER, Finer JJ (1999) Transformation of soybean (Glycine max (L.) Merrill) using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell Dev 35:451–455Google Scholar
  37. Santarem ER, Pellessier B, Finer JJ (1997) Effect of explant orientation, pH, solidifying agent and wounding on initiation ofsoybean somatic embryos. In Vitro Cell Dev B 33:13–19Google Scholar
  38. Savka MA, Ravillion B, Noel GR et al (1990) Induction of hariy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80:503–508CrossRefGoogle Scholar
  39. Schmidt MA, Tucker DM, Cahoon EB et al (2005) Towards normalization of soybean somatic embryo maturation. Plant Cell Rep 24:383–391PubMedCrossRefGoogle Scholar
  40. Scott JW, Harbaugh BK (1989) Micro-Tom-a miniature dwarf tomato. Florida Agric Exp Stat Circ 370:1–6Google Scholar
  41. Sinkar VP, Pythoud F, White FF et al (1988) rolA locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants. Genes Dev 2: 688–697PubMedCrossRefGoogle Scholar
  42. Sun HJ, Uchii S, Watanabe S et al (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431PubMedCrossRefGoogle Scholar
  43. Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967PubMedCrossRefGoogle Scholar
  44. Tomlin ES, Branch SR, Chamberlain D et al (2002) Screening of soybean, Glycine max (L.) Merrill, lines for somatic embryo induction and maturation capability from immature cotyledons. In Vitro Cell Dev B 38:543–548Google Scholar
  45. White FF, Taylor BH, Huffman GA et al (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44PubMedGoogle Scholar
  46. Zdravkovic-Korac S, Muhovski Y, Druart P et al (2004) Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep 22:698–704PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Vincent P. Klink
    • 1
    Email author
  • Margaret H. MacDonald
    • 1
  • Veronica E. Martins
    • 1
  • Soo-Chul Park
    • 2
  • Kyung-Hwan Kim
    • 3
  • So-Hyeon Baek
    • 4
  • Benjamin F. Matthews
    • 1
  1. 1.United States Department of AgricultureSoybean Genomics and Improvement LaboratoryBeltsvilleUSA
  2. 2.Molecular Physiology and Biochemistry DivisionNational Institute of Agricultural Biotechnology, Rural Development AdministrationSuwonSouth Korea
  3. 3.Cell and Genetics DivisionNational Institute of Agricultural Biotechnology, Rural Development AdministrationSuwonSouth Korea
  4. 4.Honam Agricultural Research Institute, NICS, RDAIksanSouth Korea

Personalised recommendations