Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 92, Issue 1, pp 1–13 | Cite as

Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops

  • Maria Teresa Gonzalez-ArnaoEmail author
  • Ana Panta
  • William M. Roca
  • Roosevelt H. Escobar
  • Florent Engelmann
Review

Abstract

Shoot-tips and somatic embryos are the explants of choice for the in vitro long-term storage of ex situ plant genetic resources in liquid nitrogen. Cryopreservation of organized structures has significantly progressed, especially for species of tropical origin, with the development of several vitrification-based procedures such as encapsulation-dehydration, vitrification and droplet-vitrification approaches. They have allowed improvements in survival and recovery after cryopreservation compared with conventional crystallization-based protocols, proving their effectiveness for large scale application with embryos and shoot-tips of different plants. This review addresses the main physical and technological aspects involved in plant cryopreservation methods, illustrating the development of research with three cases: citrus, cassava and potato. These studies demonstrate how cryopreservation strategies are increasingly applied for their successful employment in the genebanks.

Keywords

Cryopreservation Shoot-tips Somatic embryos Vitrification Genebank 

References

  1. Ashmore S, Saunders R, Drew R (2000) In vitro conservation and cryopreservation of papaya. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, pp 453–456Google Scholar
  2. Assy-Bah B, Engelmann F (1992) Cryopreservation of mature embryos of coconut (Cocos nucifera L.) and subsequent regeneration of plantlets. CryoLetters 13:117-126Google Scholar
  3. Bagniol S, Engelmann F, Michaux-Ferrière N (1992) Histo-cytological study of apices from in vitro plantlets of date palm (Phoenix dactylifera L.) during a cryopreservation process. CryoLetters 13:405-412Google Scholar
  4. Bajaj YPS (1983) Cassava plants from meristem cultures freeze-preserved for three years. Field Crops Res 7:161–167CrossRefGoogle Scholar
  5. Barandalla L, Sanchez I, Ritter E, Ruiz-de-Galarreta JI (2003) Conservation of potato (Solanum tuberosum L.) cultivars by cryopreservation. Span J Agric Res 1:9–13Google Scholar
  6. Benson EE, Johnston J, Muthusamy J, Harding K (2006) Physical and engineering perspectives of in vitro plant cryopreservation. In: Gupta S, Ibaraki Y (eds) Plant tissue culture engineering, vol 6. Springer Verlag, pp 441–476Google Scholar
  7. Berjak P, Farrant JM, Pammenter NW (1989) The basis of recalcitrant seed behaviour. In: Taylorson RB (ed) Recent advances in the development and germination of seeds. Plenum Press, New York, pp 89–108Google Scholar
  8. Bouafia S, Lairy G, Blanc A, Bonnel E, Dereuddre J (1995) Cryopreservation of axillary shoot tips of in vitro cultured potatoes (Solanum phureja and S. tuberosum) by encapsulation-dehydration: effects of preculture. Acta Bot Gall 142:393–402Google Scholar
  9. Bouafia S, Jelti N, Lairy G, Blanc A, Bonnel E, Dereuddre J (1996) Cryopreservation of potato shoot tips by encapsulation-dehydration. Potato Res J 39:69–78CrossRefGoogle Scholar
  10. Burke MJ (1986) The glassy state and survival of anhydrous biological systems. In: Leopold AC (ed) Membrane, metabolism and dry organisms. Cornell University Press, Ithaca, pp 358–364Google Scholar
  11. Charoensub R, Hirai D, Sakai A (2004) Cryopreservation of in vitro-grown shoot tips of cassava by encapsulation-vitrification method. CryoLetters 25:51–58PubMedGoogle Scholar
  12. Charoensub R, Phansiri S, Sakai A, Yongmanitchai W (1999) Cryopreservation of cassava in vitro-grown shoot tips cooled to −196°C by vitrification. CryoLetters 20:89–94Google Scholar
  13. CIAT (2006) CIAT Annual Report 2005–2006. Cali, ColombiaGoogle Scholar
  14. Debabrata S, Naik PS (1998) Cryopreservation of shoot tips of tetraploid potato (Solanum tuberosum L.) clones by vitrification. Ann Bot 82:455–461CrossRefGoogle Scholar
  15. Dereuddre J, Scottez C, Arnaud Y, Duron M (1990) Resistance of alginate-coated axillary shoot tips of pear tree (Pyrus communis L. Cv Beurré Hardy) in vitro plantlets to dehydration and subsequent freezing in liquid nitrogen: Effects of previous cold hardiness. In: Comptes Rendus de l’Académie des Sciences Paris, t. 310, Série III, pp 317–323Google Scholar
  16. Dereuddre J, Hassen N, Blandin S, Kaminski M (1991) Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen: 2 thermal analysis. CryoLetters 12:135–148Google Scholar
  17. Dumet D, Engelmann F, Chabrillange N, Duval Y (1993) Cryopreservation of oil palm (Elaeis guineensis Jacq.) somatic embryos involving a desiccation step. Plant Cell Rep 12:352-355CrossRefGoogle Scholar
  18. Duran-Vila N (1995) Cryoconservation of germplasm of Citrus. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, cryopreservation of plant germplasm I, vol 32. Springer-Verlag, Berlin, pp 70–86Google Scholar
  19. Duran-Vila N, Gonzalez-Arnao MT, Engelmann F (1997) Cryopreservation and in vitro culture. In: NSW Agriculture, CSIRO; ACIAR; IPGRI (eds) Proceedings of citrus germplasm conservation workshop. BrisbaneGoogle Scholar
  20. Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, pp 8–20Google Scholar
  21. Engelmann F (2003) Current research status and utilization of plant cryopreservation. In: Proceedings of the international workshop on cryopreservation of bio-genetic resources, International Technical Cooperation Center, RDA, Suwon, Korea, 3–5 June 2003Google Scholar
  22. Engelmann F (2004) Plant cryopreservation: progress and prospects. In vitro Cell Dev Biol Plant 40:427–433CrossRefGoogle Scholar
  23. Engelmann F, Benson EE, Chabrillange N, Gonzalez-Arnao MT, Mari S, Michaux-Ferrière N, Paulet F, Glaszmann JC, Charrier A (1994) Cryopreservation of several tropical plant species using encapsulation/dehydration of apices. In: Terzi M, Cella R, Falavigna A (eds) Proceedings of the 8th international congress on plant tissue and cell culture. Florence, pp 315–320Google Scholar
  24. Escobar RH, Roca WM (1997) Cryopreservation of cassava shoot tips through rapid freezing. Afr J Root Tuber Crops 2:214–215Google Scholar
  25. Escobar RH, Mafla G, Roca WM (1997) A methodology for recovering cassava plants from shoot tips maintained in liquid nitrogen. Plant Cell Rep 16:474–478Google Scholar
  26. Escobar RH, Mafla G, Roca WM (2000a) Cassava cryopreservation − I. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, pp 404–407Google Scholar
  27. Escobar RH, Debouck D, Roca WM (2000b) Development of cassava cryopreservation. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application, JIRCAS, Tsukuba/IPGRI, Rome, pp 222–226Google Scholar
  28. Escobar RH, Palacio JD, Rangel MP, Roca WM (2000c) Cassava cryopreservation – II. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application, JIRCAS, Tsukuba/IPGRI, Rome, pp 408–410Google Scholar
  29. Escobar-Pérez RH (2005) Aspectos logísticos de manejo y determinación de la estabilidad genética de materiales crioconservados de yuca (Manihot esculenta Crantz). MSc. Thesis. Universidad Nacional de Colombia, Sede PalmiraGoogle Scholar
  30. Fabre J, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot tips. CryoLetters 11:413–426Google Scholar
  31. Fahy GM, Macfarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach for cryopreservation. Cryobiology 21:407–426PubMedCrossRefGoogle Scholar
  32. Farrant J (1980) General observations of cell preservation. In: Ashwood-Smith MJ, Farrant J (eds) Low temperature preservation in medicine and biology. Pitman Medical, Tunbridge Weels, pp 1–18Google Scholar
  33. Gamez-Pastrana R, Martinez-Ocampo Y, Beristain CI, Gonzalez-Arnao MT (2004) An improved cryopreservation protocol for pineapple apices using encapsulation-vitrification. CryoLetters 25(6):405–414PubMedGoogle Scholar
  34. Golmirzaie AM, Panta A (1997) Advances in potato cryopreservation by vitrification in CIP Program Report. International Potato Center, LimaGoogle Scholar
  35. Golmirzaie AM, Panta A (2000) Advances in potato cryopreservation at CIP. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, pp 250–254Google Scholar
  36. Golmirzaie AM, Panta A, Delgado C (2000) Structural observations on potato shoot-tips after thawing from liquid nitrogen. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, pp 388–392Google Scholar
  37. Gonzalez-Arnao MT (1996) Desarrollo de una técnica para la crioconservación de meristemos apicales de caña de azúcar. Dissertation, Centro Nacional de Investigaciones (CNIC), Cuba Google Scholar
  38. Gonzalez-Arnao MT, Engelmann F, Huet C, Urra C (1993) Cryopreservation of encapsulated apices of sugarcane: effect of freezing procedure and histology. CryoLetters 14:303–308Google Scholar
  39. Gonzalez-Arnao MT, Ravelo MM, Urra-Villavicencio C, Montero MM, Engelmann F (1998a) Cryopreservation of pineapple (Ananas comosus) apices. CryoLetters 19:375–382Google Scholar
  40. Gonzalez-Arnao MT, Engelmann F, Urra-Villavicencio C, Morenza M, Rios A (1998b) Cryopreservation of citrus apices using the encapsulation-dehydration technique. CryoLetters 19:177–182Google Scholar
  41. Gonzalez-Arnao MT, Juarez J, Ortega C, Navarro L, Duran-Vila N (2003) Cryopreservation of ovules and somatic embryos of citrus using the encapsulation-dehydration technique. CryoLetters 24:85–94PubMedGoogle Scholar
  42. Gonzalez-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation-dehydration technique: review and case study on sugarcane. CryoLetters 27(3):155–168PubMedGoogle Scholar
  43. Grospietsch M, Stodulkova E, Zamecnik J (1999) Effect of osmotic stress on the dehydration tolerance and cryopreservation of Solanum tuberosum shoot tips. CryoLetters 20:339–346Google Scholar
  44. Halmagyi A, Deliu C, Coste A (2005) Plant regrowth from potato shoot tips cryopreserved by a combined vitrification-droplet method. CryoLetters 26:313–322PubMedGoogle Scholar
  45. Haskins RH, Kartha KK (1980) Freeze preservation of pea meristems: cell survival. Can Bot J 58:833–840Google Scholar
  46. Henshaw GG, Keefe PD, O’ Hara JF (1985) Cryopreservation of potato meristems. In: Schäfer-Menuhr A (ed) In vitro techniques: propagation and long-term storage. Martinus Nijhoff, Dordrecht, pp 155–160Google Scholar
  47. Hirai D (2001) Studies on cryopreservation of vegetatively propagated crops by encapsulation-vitrification method. Rep Hokkaido Prefect Agric Exp Stn 99:1–58Google Scholar
  48. Hirai D, Sakai A (1999a) Cryopreservation of in vitro-grown axillary shoot tip meristems of mint (Mentha spicata L.) by encapsulation vitrification. Plant Cell Rep 19:150–155CrossRefGoogle Scholar
  49. Hirai D, Sakai A (1999b) Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation-vitrification. Potato Res 42:153–160CrossRefGoogle Scholar
  50. Hirai D, Sakai A (2001) Recovery growth of plants cryopreserved by encapsulation-vitrification. Bull Hokkaido Prefect Agric Exp Stn 80:55–64Google Scholar
  51. Hirai D, Sakai A (2003) Simplified cryopreservation of sweet potato [Ipomoea batatas (L.) Lam.] by optimizing conditions for osmoprotection. Plant Cell Rep 21:961–966PubMedCrossRefGoogle Scholar
  52. Kartha KK, Leung NL, Mroginski LA (1982) In-vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz). Z Pflanzenphysiol 107:133–140Google Scholar
  53. Keller ERJ, Grübe M, Senula A (2005) Cryopreservation in the Gatersleben genebank - state of the art in potato, garlic and mint. In: Mem. Congr. Internat. Biotecnología y Agricultura (Bioveg 2005), Centro de Bioplantas, Ciego de Avila, CubaGoogle Scholar
  54. Keller ERJ, Senula A, Leunufna S, Grübe M (2006) Slow growth storage and cryopreservation - tools to facilitate germplasm maintenance of vegetatively propagated crops in living plant collections. Int J Refrig 29:411–417CrossRefGoogle Scholar
  55. Kim HH, Yoon JW, Park YE, Cho EG, Sohn JK, Kim TS, Engelmann F (2006) Cryopreservation of potato cultivated and wild species: critical factors in droplet vitrification. CryoLetters 27(4):223–234PubMedGoogle Scholar
  56. Kryszczuk A, Keller J, Grube M, Zimnoch-Guzowska E (2006) Cryopreservation of potato (Solanum tuberosum L.) shoot tips using vitrification and droplet method. Food Agric Environ J 4:196–200Google Scholar
  57. Langis R, Schnabel B, Earle ED, Steponkus PL (1989) Cryopreservation of Brassica campestris L., cell suspensions by vitrification. CryoLetters 10:421–428Google Scholar
  58. Langis R, Schnabel B, Earle BJ, Steponkus PL (1990) Cryopreservation of carnation shoot tips by vitrification. Cryobiology 276(69):658–659Google Scholar
  59. Lecouteux C, Florin B, Tessereau H, Bollon H, Pétiard V (1991) Cryopreservation of carrot somatic embryos using a simplified freezing process. CryoLetters 12:319–328Google Scholar
  60. Leunufna S, Keller ERL (2003) Investigating a new cryopreservation protocol for yam (Discorea spp.). Plant Cell Rep 21:1159–1166PubMedCrossRefGoogle Scholar
  61. MacFarlane DR (1987) Physical aspects of vitrification in aqueous solutions. Cryobiology 24:181–195CrossRefGoogle Scholar
  62. MacFarlane DR, Forsyth M, Barton CA (1992) Vitrification and devitrification in cryopreservation. In: Steponkus PL (ed) Advances in low temperature biology, vol 2. JAI Press, Greewish, CT, pp 221–278Google Scholar
  63. Manrique N (2000) Respuesta varietal de 95 genotipos de la colección núcleo de yuca (Manihot esculenta Crantz) a la crioconservación usando la técnica de Encapsulación-deshidratación. BSc. Thesis, Universidad Nacional de Colombia, Sede PalmiraGoogle Scholar
  64. Manzhulin AV, Butenko RG (1984) Methods of cryopreservation of apices for the storage of potato varieties. Issled po Kletoch Selektsii Kartofelya 28–32Google Scholar
  65. Manzhulin AV (1984) Factors affecting the survival of potato stem apices after deep freezing. Fiziologiya Rastenii 31:639–645Google Scholar
  66. Marin ML, Duran-Vila N (1988) Survival of somatic embryos and recovery of plants of sweet orange [Citrus sinensis (L.) Osb.] after immersion in liquid nitrogen. Plant Cell Tissue Organ Cult 14:51–57CrossRefGoogle Scholar
  67. Marin ML, Gogorcena Y, Ortiz J, Duran-Vila N (1993) Recovery of whole plants of sweet orange from somatic embryos subjected to freezing thawing treatments. Plant Cell Tissue Organ Cult 34:17–33CrossRefGoogle Scholar
  68. Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446CrossRefGoogle Scholar
  69. Mazur P (2004) Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, pp 5–55Google Scholar
  70. Mix-Wagner G (1999) The conservation of potato cultivars. Potato Res 42:427–436CrossRefGoogle Scholar
  71. Mix-Wagner G, Schumacher HM, Cross RJ (2003) Recovery of potato apices after several years of storage in liquid nitrogen. CryoLetters 24:33–41PubMedGoogle Scholar
  72. Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by the vitrification method. Plant Sci 88:67–73CrossRefGoogle Scholar
  73. Panis B (1995) Cryopreservation of Banana (Musa spp.) germplasm. Dissertation, Katholieke Universiteit Leuven, BelgiumGoogle Scholar
  74. Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55CrossRefGoogle Scholar
  75. Panis B, Strosse H, Van Den Hende S, Swennen R (2002) Sucrose preculture to simplify cryopreservation of banana meristem cultures. CryoLetters 23:375–383PubMedGoogle Scholar
  76. Panta A, Panis B, Ynouye C, Criel B, Swennen R, Roca W (2006) Improvement of potato cryopreservation for the long-term conservation of Andean landraces at CIP. In: Abstract Book of Cryo 2006. HamburgGoogle Scholar
  77. Pitt RE (1992) Thermodynamics and intracellular ice formation. In: Steponkus P (ed) Advances in low temperature biology, vol 1. JAI Press, Hamptonmill, pp 63–99Google Scholar
  78. Quatrano RS (1968) Freeze-preservation of cultured flax cells utilizing DMSO. Plant Physiol 43:2057–2061PubMedCrossRefGoogle Scholar
  79. Rall WF, Polge C (1984) Effect of warming rate on mouse embryos frozen and thawed in glycerol. J Reprod Fertil 70:285–292PubMedCrossRefGoogle Scholar
  80. Rall WF, Reid DS, Polge C (1984) Analysis of slow-freezing injury of mouse embryos by cryomicroscopical and physiochemical methods. Cryobiology 21:106–121PubMedCrossRefGoogle Scholar
  81. Reid DS (1983) Fundamental physicochemical aspects of freezing. Food Technol 37:110–115Google Scholar
  82. Reid DS (1994) Basic physical phenomena in the freezing and thawing of plant and animal tissue. In: Mallet CP (ed) Frozen food technology. Blackie Academic and Professional, Glasgow, pp 1–19Google Scholar
  83. Roca WM (1984) Cassava. In: Sharp WR, Evans DA, Ammirato RV, Yamada Y (eds) Handbook of plant cell culture: crop species, vol 2. MacMillan Publishers, New York, pp 269–301Google Scholar
  84. Roca WM, Debouck D, Escobar RH, Mafla G, Fregene M (2000) Cryopreservation and cassava germplasm conservation at CIAT. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, pp 273–279Google Scholar
  85. Sakai A (2000) Development of cryopreservation techniques. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, pp 1–7Google Scholar
  86. Sakai A (2004) Plant cryopreservation. In: Fuller BJ, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, pp 329–345Google Scholar
  87. Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification. CryoLetters 28 (in press)Google Scholar
  88. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. Brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33CrossRefGoogle Scholar
  89. Schäfer-Menuhr A, Müller E, Mix-Wagner G (1996) The use of cryopreservation as routine method for the preservation of old potato varieties. Landbauf Volkenrode 46:65–75Google Scholar
  90. Schäfer-Menurhr A, Schumacher HM, Mix-Wagner G (1997a) Cryopreservation of potato cultivars: design of a method for routine application in genebank. Acta Hortic 447:477–482Google Scholar
  91. Schäfer-Menuhr A, Schumacher HM, Mix-Wagner G (1997b) Long-term storage of old potato varieties by cryopreservation of shoot-tips in liquid nitrogen. Plant Genet Resour Newsl 111:19–24Google Scholar
  92. Steponkus PL, Langis R, Fujikawa S (1992) Cryopreservation of plant tissues by vitrification. In: Steponkus PL (ed) Advances in low temperature biology, vol 1. JAI Press Ltd., Hampton Mill, U.K., pp 1–61Google Scholar
  93. Takagi H (2000) Recent development in cryopreservation of shoot apices of tropical species. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, pp 178–193Google Scholar
  94. Taylor MJ (1987) Physico-chemical principles in low temperature biology. In: Grout BWW, Morris GJ (eds) The effects of low temperatures on biological systems. Edward Arnold Publisher, London, pp 3–71Google Scholar
  95. Taylor M, Song YC, Brockbank KGM (2004) Vitrification in tissues preservation: new developments. In: Fuller BJ, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, pp 604–641Google Scholar
  96. Thin NT, Takagi H (2000) Cryopreservation of in vitro-grown apical meristems of terrestrial orchids. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS, Tsukuba/IPGRI, Rome, pp 441–443Google Scholar
  97. Toner M (1993) Nucleation of ice crystalls inside biological cells. In: Steponkus P (ed) Advances in low temperature biology, vol 2. JAI Press, London, pp 1–51Google Scholar
  98. Touchell DH, Dixon KW (1996) Cryopreservation for conservation of Australian endangered plants. In: Normah MN, Narima MK, Clyde MM (eds) In vitro conservation of plant genetic resources. University Kebangsaan, Malaysia, pp 169–180Google Scholar
  99. Towill LE (1981) Cryopreservation of shoot-tips from the tuber-bearing Solanum species. Am Potato J 58:522Google Scholar
  100. Towill LE (1983) Improved survival after cryogenic exposure of shoot tips derived from in vitro plantlet cultures of potato. Cryobiology 20:567–573PubMedCrossRefGoogle Scholar
  101. Towill LE (1990) Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Rep 9:178–180CrossRefGoogle Scholar
  102. Uragami A, Sakai A, Nagai M (1990) Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep 9:328–331CrossRefGoogle Scholar
  103. Uragami A, Sakai A, Nagai M, Takahashi T (1989) Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Rep 8:418–421CrossRefGoogle Scholar
  104. Withers L, Engelmann F (1997) In vitro conservation of plant genetic resources. In: Altman A (ed) Agricultural biotechnology. Marcel Dekker, Inc., New York, pp 57–88Google Scholar
  105. Wood CB, Pritchard HW, Miller AP (2000) Simultaneous preservation of orchid seed and its fungal symbiont using encapsulation-dehydration is dependent on moisture content and storage temperature. CryoLetters 21(2):125–136PubMedGoogle Scholar
  106. Yoon JW, Kim HH, Ko HC, Hwang HS, Cho EG, Sohn JK, Engelmann F (2006) Cryopreservation of cultivated and wild potato varieties: effect of subculture of mother-plants and of preculture of shoot tips. CryoLetters 27:211–222PubMedGoogle Scholar
  107. Zhao MA, Dhital SP, Fang YL, Khu DM, Song YS, Park EJ, Kang CW, Lim HT (2005) Application of slow-freezing cryopreservation method for the conservation of diverse potato (Solanum tuberosum L.) genotypes. Plant Biotechnol J 7:1–4Google Scholar
  108. Zhao MA, Zhu YZ, Dhital SP, Khu DM, Song YS, Wang MH, Lim HT (2006) An efficient cryopreservation procedure for potato (Solanum tuberosum L.) utilizing the new ice blocking agent, Supercool X1000. Plant Cell Rep 25:164CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Maria Teresa Gonzalez-Arnao
    • 1
    Email author
  • Ana Panta
    • 2
  • William M. Roca
    • 2
  • Roosevelt H. Escobar
    • 3
  • Florent Engelmann
    • 4
  1. 1.Facultad de Ciencias QuímicasUniversidad VeracruzanaOrizabaMexico
  2. 2.Centro Internacional de la Papa (CIP)LimaPeru
  3. 3.Centro Internacional de Agricultura Tropical (CIAT)CaliColombia
  4. 4.Institut de recherche pour le développement (IRD), UMR DIA-PCMontpellier Cedex 5France

Personalised recommendations