Embryo production through somatic embryogenesis can be used to study cell differentiation in plants

  • Francisco R. Quiroz-Figueroa
  • Rafael Rojas-Herrera
  • Rosa M. Galaz-Avalos
  • Víctor M. Loyola-VargasEmail author
Review Paper


Somatic embryogenesis is the process by which somatic cells, under induction conditions, generate embryogenic cells, which go through a series of morphological and biochemical changes that result in the formation of a somatic embryo. Somatic embryogenesis differs from zygotic embryogenesis in that it is observable, its various culture conditions can be controlled, and a lack of material is not a limiting factor for experimentation. These characteristics have converted somatic embryogenesis into a model system for the study of morphological, physiological, molecular and biochemical events occurring during the onset and development of embryogenesis in higher plants; it also has potential biotechnological applications. The focus of this review is on embryo development through somatic embryogenesis and especially the factors affecting cell and embryo differentiation.


Plant tissue culture Review Somatic embryogenesis 



The authors thank the help of Emily Wortman-Wunder and Dayakar Badri for the English correction of the manuscript.


  1. Ammirato PV (1983) Embryogenesis. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol. I. Techniques for propagation and breeding. Macmillan, New York, pp 82–123Google Scholar
  2. Ammirato PV (1987) Organizational events during somatic embryogenesis. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant biology vol. 3. Plant tissue and cell culture. Alan R. Liss, Co., New York, pp 57–81Google Scholar
  3. Bajaj YPS (1995) Somatic embryogenesis and its applications for crop improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol. 30. Somatic embryogenesis and synthetic seed I. Springer-Verlag, Berlin, pp 105–125Google Scholar
  4. Baldan B, Guzzo F, Filippini F, Gasparian M, LoSchiavo F, Vitale A, De Vries SC, Mariani P, Terzi M (1997) The secretory nature of the lesion of carrot cell variant ts11, rescuable by endochitinase. Planta 203:381–389PubMedGoogle Scholar
  5. Barry-Etienne D, Bertrand B, Schlönvoigt A, Etienne H (2002) The morphological variability within a population of coffee somatic embryos produced in a bioreactor affects the regeneration and the development of plants in the nursery. Plant Cell Tissue Organ Cult 68:153–162Google Scholar
  6. Baudino S, Hansen S, Brettschneider R, Hecht VFG, Dresselhaus T, Lörz H, Dumas C, Rogowsky PM (2001) Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta 213:1–10PubMedGoogle Scholar
  7. Berger F (1999) Endosperm development. Curr Opin Plant Biol 2:28–32PubMedGoogle Scholar
  8. Berger F, Taylor A, Brownlee C (1994) Cell fate determination by the cell wall in early fucus development. Science 263:1421–1423PubMedGoogle Scholar
  9. Bhojwani SS, Razdan MK (1983) Plant tissue culture: theory and practice. Elsevier, AmsterdamGoogle Scholar
  10. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, Van Lammeren AAM, Miki BLA, Custers JBM, Van Lookeren-Campagne MM (2002) Ectopic expression of baby boom triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749PubMedGoogle Scholar
  11. Buchheim JA, Colburn SM, Ranch JP (1989) Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol 89:768–775PubMedGoogle Scholar
  12. Carlberg I, Jonsson L, Bergenstrahle A, Soderhall K (1987) Purification of a trypsin inhibitor secreted by embryogenic carrot cells. Plant Physiol 84:197–290PubMedGoogle Scholar
  13. Carlberg I, Söderhäll K, Glimelius K, Eriksson T (1984) Protease activities in non-embryogenic and embryogenic carrot cell strains during callus growth and embryo formation. Physiol. Plant 62:458–464Google Scholar
  14. Chapman A, Blervacq AS, Vasseur J, Hilbert JL (2000) Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of β-glucosyl Yariv reagent and epitope localisation during embryo development. Planta 211:305–314PubMedGoogle Scholar
  15. Chung W, Pedersen H, Chin C-K (1992) Enhanced somatic embryo production by conditioned media in cell suspension cultures of Daucus carota. Biotechnol Lett 14:837–840Google Scholar
  16. Conger BV, Hanning GE, Gray DJ, McDaniel JK (1983) Direct embryogenesis from mesophyll cells of orchardgrass. Science 221:850–851PubMedGoogle Scholar
  17. Cordewener J, Booij H, Van der Zandt H, Van Engelen FA, Van Kammen A, De Vries SC (1991) Tunicamycin-inhibited carrot somatic embryogenesis can be restored by secreted cationic peroxidase isoenzymes. Planta 184:478–486Google Scholar
  18. Coutos-Thevenot P, Maes O, Jouenne T, Mauro MC, Boulay M, Deloire A, Guern J (1992) Extracellular protein pattern of grapevine cell suspensions in embryogenic and non-embryogenic situations. Plant Sci 86:137–145Google Scholar
  19. Cuadrado Y, Guerra H, Martín AB, Gallego P, Hita O, Dorado A, Villalobos N (2001) Differences in invertase activity in embryogenic and non-embryogenic calli from Medicago arborea. Plant Cell Tissue Organ Cult 67:145–151Google Scholar
  20. Cvikrová M, Hrubcová M, Eder J, Binarová P (1996) Changes in the levels of endogenous phenolics, aromatic monoamines, phenylalanine ammonia-lyase, peroxidase and auxin oxidase activities during initiation of alfalfa embryogenic and nonembryogenic calli. Plant Physiol Biochem 34:853–861Google Scholar
  21. De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433PubMedGoogle Scholar
  22. De Jong AJ, Hendriks T, Meijer EA, Penning M, Lo Schiavo F, Terzi M, Van Kammen A, De Vries SC (1995) Transient reduction in secreted 32 kD chitinase prevents somatic embryogenesis in the carrot (Daucus carota L.) variant ts11. Devel Genet 16:332–343Google Scholar
  23. Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509Google Scholar
  24. Domon JM, Neutelings G, Roger D, David A, David H (2000) A basic chitinase-like protein secreted by embryogenic tissues of Pinus caribaea acts on arabinogalactan proteins extracted from the same cell lines. J Plant Physiol 156:33–39Google Scholar
  25. Dos Santos AVP, Machado RD (1989) A scanning electron microscope study of Theobroma cacao somatic embryogenesis. Ann Bot 64:293–296Google Scholar
  26. Dubois T, Guedira M, Dubois J, Vasseur J (1990) Direct somatic embryogenesis in roots of Cichorium: is callose an early marker? Ann Bot 65:539–545Google Scholar
  27. Dubois T, Guedira M, Vasseur J (1991) Direct somatic embryogenesis in leaves of Cichorium. A histological and SEM study of early stages. Protoplasma 162:120–127Google Scholar
  28. Dudits D, Bögre L, Györgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:473–482Google Scholar
  29. Dudits D, Györgyey J, Bögre L, Bakó L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 267–308Google Scholar
  30. Egertsdotter U, Mo LH, Von Arnold S (1993) Extracellular proteins in embryogenic suspension cultures of Norway spruce (Picea abies). Physiol Plant 88:315–321Google Scholar
  31. Egertsdotter U, Von Arnold S (1995) Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol Plant 93:334–345Google Scholar
  32. Faure O, Aarrouf J, Nougarede A (1996) Ontogenesis, differentiation and precocious germination in anther-derived somatic embryos of grapevine (Vitis vinifera L.): Proembryogenesis. Ann Bot 78:23–28Google Scholar
  33. Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228Google Scholar
  34. Fernandez S, Michaux-Ferrière N, Coumans M (1999) The embryogenic response of immature embryo cultures of durum wheat (Triticum durum Desf.): histology and improvement by AgNO3. Plant Growth Regul 28:147–155Google Scholar
  35. Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, Von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411PubMedGoogle Scholar
  36. Fridborg E (1978) The effect of activated charcoal on tissue cultures; adsorption of metabolites inhibiting morphogenesis. Physiol Plant 43:104–106Google Scholar
  37. Gaj MD (2001) Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell Tissue Organ Cult 64:39–46Google Scholar
  38. Galiba G, Yamada Y (1988) A novel method increasing the frequency of somatic embryogenesis in wheat tissue culture by NaCl and KCl supplementation. Plant Cell Rep 7:55–58Google Scholar
  39. Gavish H, Vardi A, Fluhr R (1991) Extracellular proteins and early embryo development in Citrus nucellar cell cultures. Physiol Plant 82:606–616Google Scholar
  40. Gavish H, Vardi A, Fluhr R (1992) Suppression of somatic embryogenesis in Citrus cell cultures by extracellular proteins. Planta 186:511–517Google Scholar
  41. Gill R, Malik KA, Sanago MHM, Saxena PK (1998) Somatic embryogenesis and plant regeneration from seedling cultures of tomato (Lycopersicon esculentum Mill.). J Plant Physiol 147:273–276Google Scholar
  42. Giuliano G, Lo Schiavo F, Terzi M (1984) Isolation and developmental characterization of temperature-sensitive carrot cell variants. Theor Appl Genet 67:179–183Google Scholar
  43. Goldberg RB, De Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614PubMedGoogle Scholar
  44. Grossmann K (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508PubMedGoogle Scholar
  45. Grotkass C, Lieberei R, Preil W (1995) Polyphenoloxidase-activity and –activation in embryogenic and non-embryogenic suspension cultures of Euphorbia pulcherrima. Plant Cell Rep 14:428–431Google Scholar
  46. Hakman I, Fowke LC, Von Arnold S, Eriksson T (1985) The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway Spruce). Plant Sci 38:53–59Google Scholar
  47. Halperin W (1966) Alternative morphogenetic events in cell suspensions. Am J Bot 53:443–453Google Scholar
  48. Halperin W, Jensen WA (1967) Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res 18:428–443PubMedGoogle Scholar
  49. Hanai H, Matsuno T, Yamamoto M, Matsubayashi Y, Kobayashi T, Kamada H, Sakagami Y (2000) A secreted peptide growth factor, phytosulfokine, acting as a stimulatory factor of carrot somatic embryo formation. Plant Cell Physiol 41:27–32PubMedGoogle Scholar
  50. Harada JJ (1999) Signaling in plant embryogenesis. Curr Opin Plant Biol 2:23–27PubMedGoogle Scholar
  51. Hatanaka T, Sawabe E, Azuma T, Uchida N, Yasuda T (1995) The role of ethylene in somatic embryogenesis from leaf disks of Coffea canephora. Plant Sci 107:199–204Google Scholar
  52. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, De Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816PubMedGoogle Scholar
  53. Herman EB (1991) Recent advances in plant tissue culture. regeneration, micropropagation and media 1988–1991. Agritech Consultants, Inc., USAGoogle Scholar
  54. Herman EB (1995) Recent advances in plant tissue culture III. Regeneration and micropropagation: techniques, systems and media 1991–1995. Agritech Consultants, USAGoogle Scholar
  55. Higashi K, Daita M, Kobayashi T, Sasaki K, Harada H, Kamada H (1998) Inhibitory conditioning for carrot somatic embryogenesis in high-cell-density cultures. Plant Cell Rep 18:2–6Google Scholar
  56. Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117PubMedGoogle Scholar
  57. Huang B, Bird S, Kemble R, Simmonds D, Keller W, Mili B (1990) Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. topas. Plant Cell Rep 8:594–597Google Scholar
  58. Hutchinson MJ, Murr D, Krishnaraj S, Senaratna T, Saxena PK (1997) Does ethylene play a role in thidiazuron-regulated somatic embryogenesis of geranium (Pelargonium × Hortorum bailey) hypocotyl cultures? In vitro Cell Dev Biol Plant 33:136–141Google Scholar
  59. Hutchinson MJ, Saxena PK (1996) Acetylsalicylic acid enhances and synchronizes thidiazuron-induced somatic embryogenesis in geranium (Pelargonium × hortorum Bailey) tissue cultures. Plant Cell Rep 15:512–515Google Scholar
  60. Ibaraki Y, Matsushima R, Kurata K (2000) Analysis of morphological changes in carrot somatic embryogenesis by serial observation. Plant Cell Tissue Organ Cult 61:9–14Google Scholar
  61. Igasaki T, Akashi N, Ujino-Ihara T, Matsubayashi Y, Sakagami Y, Shinohara K (2003) Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica. Plant Cell Physiol 44:1412–1416PubMedGoogle Scholar
  62. Ikeda-Iwai M, Satoh S, Kamada H (2002) Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos. J Exp Bot 53:1575–1580PubMedGoogle Scholar
  63. Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114PubMedGoogle Scholar
  64. Jayasankar S, Bondada BR, Li Z, Gray DJ (2002) A unique morphotype of grapevine somatic embryos exhibits accelerated germination and early plant development. Plant Cell Rep 20:907–911Google Scholar
  65. Jimenez VM, Bangerth F (2001) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol Plant 111:389–395PubMedGoogle Scholar
  66. Kairong KR, Xing GS, Liu XM, Xing GM, Wang YF (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16Google Scholar
  67. Kamada H, Kobayashi K, Kiyosue T, Harada H (1989) Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In vitro Cell Dev Biol Plant 25:1163–1166CrossRefGoogle Scholar
  68. Kato H, Takeuchi M (1963) Morphogenesis in vitro starting from single cells of carrot root. Plant Cell Physiol 4:243–245Google Scholar
  69. Kawahara R, Komamine A (1995) Molecular basis of somatic embryogenesis. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol. 30. Somatic embryogenesis and synthetic seed I. Springer-Verlag, Berlin, pp 30–40Google Scholar
  70. Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep 19:551–557Google Scholar
  71. Kiyosue T, Takano K, Kamada H, Harada H (1990) Induction of somatic embryogenesis in carrot by heavy metal ions. Can J Bot 68:2301–2303Google Scholar
  72. Kobayashi T, Eun CH, Hanai H, Matsubayashi Y, Sakagami Y, Kamada H (1999) Phytosulphokine-a, a peptidyl plant growth factor, stimulates somatic embryogenesis in carrot. J Exp Bot 50:1123–1128Google Scholar
  73. Kobayashi T, Higashi K, Sasaki K, Asami T, Yoshida S, Kamada H (2000) Purification from conditioned medium and chemical identification of a factor that inhibits somatic embryogenesis in carrot. Plant Cell Physiol 41:268–273PubMedGoogle Scholar
  74. Komamine A, Murata N, Nomura K (2005) Mechanisms of somatic embryogenesis in carrot suspension cultures – morphology, physiology, biochemistry, and molecular biology. In vitro Cell Dev Biol Plant 41:6–10Google Scholar
  75. Kreuger M, Van Holst G (1995) Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta 197:135–141Google Scholar
  76. Kreuger M, Van Holst GJ (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189:243–248Google Scholar
  77. Kreuger M, Van Holst GJ (1996) Arabinogalactan proteins and plant differentiation. Plant Mol Biol 30:1077–1086PubMedGoogle Scholar
  78. Krikorian AD, Simola LK (1999) Totipotency, somatic embryogenesis, and Harry Waris (1893–1973). Physiol Plant 105:348–355Google Scholar
  79. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275PubMedGoogle Scholar
  80. Lee EK, Cho DY, Soh WY (2001) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep 20:408–415Google Scholar
  81. Leslie CA, Romani RJ (1986) Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Rep 5:144–146Google Scholar
  82. Letarte J, Simion E, Miner M, Kasha K (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698PubMedGoogle Scholar
  83. Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann NY Acad Sci 851:187–198PubMedGoogle Scholar
  84. Litz RE (1986) Effect of osmotic stress on somatic embryogenesis in Carica suspension cultures. J Am Soc Hortic Sci 111:969–972Google Scholar
  85. Lo Schiavo F, Giuliano G, De Vries SC, Genga A, Bollini R, Pitto L, Cozzani F, Nuti-Ronchi V, Terzi M (1990) A carrot cell variant temperature sensitive for somatic embryogenesis reveals a defect in the glycosylation of extracellular proteins. Mol Gen Genet 223:385–393PubMedGoogle Scholar
  86. Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 1383–1399Google Scholar
  87. Lorbiecke R, Steffens M, Tomm JM, Scholten S, von Wiegen P, Kranz E, Wienand U, Sauter M (2005) Phytosulphokine gene regulation during maize (Zea mays L.) reproduction. J Exp Bot 56:1805–1819PubMedGoogle Scholar
  88. Lotan T, Ohto M, Matsudaira YK, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis leafy cotyledon1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205PubMedGoogle Scholar
  89. Luo JP, Jiang ST, Pan LJ (2001) Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Sci 161:125–132Google Scholar
  90. Maës O, Coutos-Thévenot P, Jouenne T, Boulay M, Guern J (1997) Influence of extracellular proteins, proteases and protease inhibitors on grapevine somatic embryogenesis. Plant Cell Tissue Organ Cult 50:97–105Google Scholar
  91. Maheswaran G, Williams EG (1985) Origin and development of somatic embryoids formed directly on immature embryos of Trifolium repens in vitro. Ann Bot 56:619–630Google Scholar
  92. Majewska-Sawka A, Nothnagel EA (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiol 122:3–9PubMedGoogle Scholar
  93. Malinowski R, Filipecki MK (2002) The role of cell wall in plant embryogenesis. Cellul Mol Biol Lett 7:1137–1151Google Scholar
  94. Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726PubMedGoogle Scholar
  95. Matsubayashi Y, Goto T, Sakagami Y (2004) Chemical nursing: phytosulfokine improves genetic transformation efficiency by promoting the proliferation of surviving cells on selective media. Plant Cell Rep 23:155–158PubMedGoogle Scholar
  96. Matsubayashi Y, Ogawa M, Moritam A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, physulfokine. Science 296:1470–1472PubMedGoogle Scholar
  97. Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA 93:7623–7627PubMedGoogle Scholar
  98. Matsubayashi Y, Yang H, Sakagami Y (2001) Peptide signals and their receptors in higher plants. Trends Plant Sci 6:573–577PubMedGoogle Scholar
  99. Matthys-Rochon E (2005) Secreted molecules and their role in embryo formation in plants: a mini-review. Acta Biol Cracov Bot 47:23–29Google Scholar
  100. McCabe PF, Valentine TA, Scott FL, Pennell RI (1997) Soluble signals from cells identified ar the cell wall establish a developmental pathway in carrot. Plant Cell 9:2225–2241PubMedGoogle Scholar
  101. Meijer EGM, Brown DCW (1988) Inhibition of somatic embryogenesis in tissue cultures of Medicago sativa by aminoethoxyvinylglycine, amino-oxyacetic acid, 2, 4-dinitrophenol and salicylic acid at concentrations which do not inhibit ethylene biosynthesis and growth. J Exp Bot 39:263–270Google Scholar
  102. Mo LH, Egertsdotter U, Von Arnold S (1996) Secretion of specific extracellular proteins by somatic embryos of Picea abies is dependent on embryo morphology. Ann Bot 77:143–152Google Scholar
  103. Nabors MW, Heyser JW, Dykes TA, DeMott KJ (1983) Long-duration, high-frequency plant regeneration from cereal tissue cultures. Planta 157:385–391Google Scholar
  104. Nakamura T, Taniguchi T, Maeda E (1992) Studies on somatic embryogenesis of coffee by scanning electron microscope. Jpn J Crop Sci 61:476–486Google Scholar
  105. Nissen P (1994) Stimulation of somatic embryogenesis in carrot by ethylene: effects of modulators of ethylene biosynthesis and action. Physiol Plant 92:397–403Google Scholar
  106. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer-Verlag, Berlin, pp 475–518Google Scholar
  107. Nomura K, Komamine A (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol 79:988–991PubMedGoogle Scholar
  108. Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291PubMedCrossRefGoogle Scholar
  109. Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13,839–13,844Google Scholar
  110. Oinam GS, Kothari SL (1995) Totipotency of coleoptile tissue in Indica rice (Oryza sativa L. cv. CH 1039). Plant Cell Rep 14:245–248Google Scholar
  111. Osuga K, Kamada H, Komamine A (1993) Cell density is an important factor for synchronization of the late stage of somatic embryogenesis at high frequency. Plant Tissue Cult Lett 10:180–183Google Scholar
  112. Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819PubMedGoogle Scholar
  113. Pennell RI, Janniche L, Scofield GN, Booij H, De Vries SC, Roberts K (1992) Identification of a transitional cell state in the developmental pathway to carrot somatic embryogenesis. J Cell Biol 119:1371–1380PubMedGoogle Scholar
  114. Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168PubMedGoogle Scholar
  115. Quiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R, Loyola-Vargas VM (2002a) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20:1141–1149Google Scholar
  116. Quiroz-Figueroa FR, Méndez-Zeel M, Larqué-Saavedra A, Loyola-Vargas VM (2001) Picomolar concentrations of salycilates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Rep 20:679–684Google Scholar
  117. Quiroz-Figueroa FR, Méndez-Zeel M, Sánchez-Teyer F, Rojas-Herrera R, Loyola-Vargas VM (2002b) Differential gene expression in embryogenic and non-embryogenic clusters from cell suspension cultures of Coffea arabica L. J Plant Physiol 159:1267–1270Google Scholar
  118. Quiroz-Figueroa FR, Rojas-Herrera R, Sánchez-Teyer F, Loyola-Vargas VM (2000) Compuestos excretados por los CTV y su papel en la embriogénesis somática. In: Bernal-Lugo I, Loza H (eds) Simposia académico en honor de la Dra. Estela Sánchez Quintanar, Facultad de Química. UNAM, México, pp 9–19Google Scholar
  119. Raghavan V (2000) Developmental biology of flowering plants. Springer-Verlag, New YorkGoogle Scholar
  120. Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463Google Scholar
  121. Raskin I, Skubatz H, Tang W, Meeusen BJD (1990) Salicylic acid levels in thermogenic and nonthermogenic plants. Ann Bot 66:369–373Google Scholar
  122. Reinert J (1959) Uber die kontrolle der morphogenese und die induktion von adventivembryonen an gewebekulturen aus karotten. Planta 53:318–333Google Scholar
  123. Rojas-Herrera R, Quiroz-Figueroa FR, Monforte-González M, Sánchez-Teyer F, Loyola-Vargas VM (2002) Differential gene expression during somatic embryogenesis in Coffea arabica L., revealed by RT-PCR differential display. Mol Biotechnol 21:43–50Google Scholar
  124. Roustan JP, Latche A, Fallot J (1989a) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel. Plant Cell Rep 8:182–185Google Scholar
  125. Roustan J-P, Latche A, Fallot J (1989b) Effet de l’acide salicylique et de l’acide acétylsalicylique sur la production d’éthylène et l’embryogenèse somatique de suspensions cellulaires de carotte (Daucus carota L.). CR Acad Sci (Paris) Sér III 308:395–399Google Scholar
  126. Russell SD (1992) Doble fertilization. Int Rev Cytol 140:357–388Google Scholar
  127. Ryan CA, Pearce G, Scheer J, Moura DS (2002) Polypeptide hormones. Plant Cell 14:S251–S264PubMedGoogle Scholar
  128. Samaj J, Baluska F, Bobák M, Volkmann D (1999) Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4. Plant Cell Rep 18:369–374Google Scholar
  129. Satoh S, Kamada H, Harada H, Fujii T (1986) Auxin-controlled glycoprotein release into the medium of embryogenic carrot cells. Plant Physiol 81:931–933PubMedCrossRefGoogle Scholar
  130. Schiavone FM, Cooke TJ (1985) A geometric analysis of somatic embryo formation in carrot cell culture. Can J Bot 63:1573–1578Google Scholar
  131. Schmidt EDL, Guzzo F, Toonen MAJ, De Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062PubMedGoogle Scholar
  132. Sharp WR, Söndahl MR, Caldas LS, Maraffa SB (1980) The physiology of in vitro asexual embryogenesis. Horticul Rev 268–310Google Scholar
  133. Smith DL, Krikorian AD (1989) Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium. Am J Bot 76:1832–1843PubMedGoogle Scholar
  134. Somleva MN, Schmidt EDL, De Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726Google Scholar
  135. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35Google Scholar
  136. Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708Google Scholar
  137. Stirn S, Jacobsen H-J (1987) Marker proteins for embryogenic differentiation patterns in pea callus. Plant Cell Rep 6:50–54Google Scholar
  138. Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) Leafy cotyledon encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811PubMedGoogle Scholar
  139. Stuart R, Street HE (1969) Studies on the growth in culture of plant cells IV. The initiation of division in suspensions of stationary-phase cells of Acer pseudoplatanus L. J Exp Bot 20:556–571Google Scholar
  140. Sundaresan V (2005) Control of seed size in plants. Proc Natl Acad Sci USA 102:17887–17888PubMedGoogle Scholar
  141. Tan SK, Kamada H (2000) Initial identification of a phosphoprotein that appears to be involved in the induction of somatic embryogenesis in carrot. Plant Cell Rep 19:739–747Google Scholar
  142. Tchorbadjieva M, Kalmukova R, Pantchev I, Kyurkchiev S (2005) Monoclonal antibody against a cell wall marker protein for embryogenic potential of Dactylis glomerata L. suspension cultures. Planta 222:811–819PubMedGoogle Scholar
  143. Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, Van Kammen A, De Vries SC (1994) Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta 194:565–572Google Scholar
  144. Toonen MAJ, Schmidt EDL, Van Kammen A, De Vries SC (1997) Promotive and inhibitory effects of diverse arabinogalactan proteins on Daucus carota L. somatic embryogenesis. Planta 203:188–195Google Scholar
  145. Trigiano RN, Gray DJ, Conger BV, McDaniel JK (1989) Origin of direct somatic embryos from cultured leaf segments of Dactylis glomerata. Bot Gaz 150:72–77Google Scholar
  146. Tsukahara M, Komamine A (1997) Separation and analysis of cell types involved in early stages of carrot somatic embryogenesis. Plant Cell Tissue Organ Cult 47:145–151Google Scholar
  147. Umehara M, Ogita S, Sasamoto H, Koshino H, Asami T, Fujioka S, Yoshida S, Kamada H (2005) Identification of a novel factor, vanillyl benzyl ether, which inhibits somatic embryogenesis of Japanese larch (Larix leptolepis Gordon). Plant Cell Physiol 46:445–453PubMedGoogle Scholar
  148. Van Engelen FA, De Vries SC (1992) Extracellular proteins in plant embryogenesis. Trends Genet 8:66–70PubMedGoogle Scholar
  149. Van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, Van Kammen A, De Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890PubMedGoogle Scholar
  150. Van Hengel AJ, Van Kammen A, De Vries SC (2002) A relationship between seed development, arabinogalactan-proteins (AGP) and the AGP mediated promotion of somatic embryogenesis. Physiol Plant 114:637–644PubMedGoogle Scholar
  151. Verdus M-C, Dubois T, Dubois J, Vasseur J (1993) Ultrastructural changes in leaves of Cichorium during somatic embryogenesis. Ann Bot 72:375–383Google Scholar
  152. Waris H (1957) A striking morphogenetic effect of amino acid in seed plant. Suom Kemistil 36B:121Google Scholar
  153. Warren GS, Fowler MW (1981) Physiological interactions during the initial stages of embryogenesis in cultures of Daucus carota L. New Phytol 87:481–486Google Scholar
  154. West MAL, Harada JJ (1993) Embryogenesis in higher plants: an overview. Plant Cell 5:1361–1369PubMedGoogle Scholar
  155. Wetherell DF (1984) Enhanced adventive embryogenesis resulting from plasmolysis of cultured wild carrot cells. Plant Cell Tissue Organ Cult 5:221–227Google Scholar
  156. Wilde HD, Nelson WS, Booij H, De Vries SC, Thomas TL (1988) Gene-expression programs in embryogenic and non-embryogenic carrot cultures. Planta 176:205–211Google Scholar
  157. Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462Google Scholar
  158. Yang HP, Matsubayashi Y, Hanai H, Sakagami Y (2000) Phytosulfokine-a, a peptide growth factor found in higher plants: its structure, functions, precursor and receptors. Plant Cell Physiol 41:825–830PubMedGoogle Scholar
  159. Yeung EC (1995) Structural and development patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Netherlands, pp 205–247Google Scholar
  160. Yeung EC (1999) The use of histology in the study of plant tissue culture systems-some practical comments. In Vitro Cell Dev Biol Plant 35:137–143Google Scholar
  161. Zheng MY, Weng Y, Konzak CF (2002) The effect of ovary-conditioned medium on microspore embryogenesis in common wheat (Triticum aestivum L.). Plant Cell Rep 20:802–807Google Scholar
  162. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423PubMedGoogle Scholar
  163. Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:805–815Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Francisco R. Quiroz-Figueroa
    • 1
  • Rafael Rojas-Herrera
    • 2
  • Rosa M. Galaz-Avalos
    • 3
  • Víctor M. Loyola-Vargas
    • 3
    • 4
    Email author
  1. 1.Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)Cuernavaca, MorelosMéxico
  2. 2.Unidad SuresteCentro de Investigación y Asistencia en Tecnología y Diseño del Estado de JaliscoJaliscoMéxico
  3. 3.Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de YucatánMérida, YucatánMéxico
  4. 4.Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsUSA

Personalised recommendations