Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 87, Issue 1, pp 49–65 | Cite as

Developments in coffee biotechnology—in vitro plant propagation and crop improvement

  • Vinod Kumar
  • M. Madhava Naidu
  • G. A. RavishankarEmail author
Open Access
Original Paper

Abstract

Coffee is an important plantation crop grown in about 80 countries across the globe. In recent years, coffee attained lot of attention in the biotechnology research area. Since last three decades, there has been a steady flow of information on coffee biotechnology and now it is entering into the genomic era. Major milestones in coffee biotech research are successful in vitro manipulation and multiplication of coffee, development of gene transfer protocols and generation of transgenic coffee plants with specific traits. The isolation of genes involved in caffeine biosynthetic pathway has opened up new avenues for generating caffeine free transgenic coffee. With the initiation of international coffee genomics initiatives, the genomic research in coffee is expected to reach new dimensions. The IPR issues may play crucial role in sharing of benefits during international collaborations in near future. This review focuses on the basic and applied aspects of coffee biotechnology for newer potentials.

Keywords

Biotechnology Coffee Somatic embryos Tissue culture Micropropagation Caffeine pathway Transgenic 

Notes

Acknowledgements

Authors are thankful to Dr. V. Prakash, Director CFTRI, Mysore for his keen interest. VK is grateful to CSIR, New Delhi for the award of Research Fellowship. The authors are thankful to Department of Biotechnology, Government of India, for the financial assistance.

References

  1. Abdelnour A, Engelmann F, Hibjan C et al (1993) Zygotic and somatic embryo cryopreservation in coffee (Coffea arabica, C. canephora and Arabusta). In: Proceedings of 15th colloquium of international coffee science association (ASIC), Montpellier, FranceGoogle Scholar
  2. Albarran J, Bertrand B, Lartaud M et al (2005) Cycle characteristics in a temperory immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tiss Org Cult 81:27–36CrossRefGoogle Scholar
  3. Anonymous (2005) Globe scan, Indian Coffee, JuneGoogle Scholar
  4. Ashihara H, Suzuki T (2004) Distribution and biosynthesis of caffeine in plants. Front Biosci 9:1864–1876PubMedGoogle Scholar
  5. Barton CR, Adams TL, Zorowitz MA (1991) Stable transformation of foreign DNA into Coffea arabica plants. In: Proceed. 14th international scientific colloquium on coffee, ASIC San Fransisco, pp 460–464Google Scholar
  6. Baumann TW, Koets R, Morath P (1983) N-methyltransferase activities in suspension cultures of Coffea arabica L. Plant Cell Rep 2:33–35Google Scholar
  7. Berthouly M, Alvarad D, Carrasco C, Teisson C (1994) In vitro micropropagation of coffee sp. by temporary immersion. In: Abstracts 8th international congress of plant tissue and cell culture, Florence, Italy, p 162Google Scholar
  8. Berthouly M, Michaux-Ferriere N (1996) High frequency somatic embryogenesis in Coffea canephora—induction conditions and histological evolution. Plant Cell Tiss Org Cult 44:169–176CrossRefGoogle Scholar
  9. Campa C, Doulbeau S, Dussert S, Hamon S, Noirot M (2005a) Diversity in bean caffeine content among wild Coffea species: evidence of a discontinuous distribution. Food Chem 91:633–637CrossRefGoogle Scholar
  10. Campa C, Doulbeau S, Dussert S, Hamon S, Noirot M (2005b) Qualitative relationship between caffeine and chlorogenic acid contents among wild Coffea species. Food Chem 93:135–139CrossRefGoogle Scholar
  11. Canche-Moo RLR, Ku-Gonzalez A, Burgeff C, Loyola-Vargas VM, Rodríguez-Zapata LC, Castaño E (2006) Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell Tiss Org Cult. DOI: 10.1007/s11240-005-9036-4Google Scholar
  12. Carneiro MF (1993) Induction of double haploids via anther or isolated microspores culture. In: Proceedings of 15th colloquium of international coffee science␣association (ASIC), vol I, Montpellier, France, p 133Google Scholar
  13. Carneiro MF (1995) Androgenesis in different progenies of Catimor. In: Abstracts of the 16th colloquium of coffee science association (ASIC), Kyoto, Japan. AP7Google Scholar
  14. Carneiro MF (1997) Coffee biotechnology and its applications in genetic transformation. Euphytica 96:167–172CrossRefGoogle Scholar
  15. Carneiro MF (1999) Advances in coffee biotechnology—review. Ag Biotechnet, vol 1, ABN 006, pp 1–14. Web source: http://www.agbiotecnet.com/reviews/Jan99/ HTML/Carneiro.htm)Google Scholar
  16. Carneiro MF, Ribeiro TMO (1989) In vitro meristem culture and plant regeneration in some genotypes of Coffea arabica. Brot Genét 85:127–138Google Scholar
  17. Charrier A, Berthaud J (1975) Variation de la teneur en caffeine dans le genre Coffea. Café Cacao Thé 19:251–264Google Scholar
  18. Clifford MN, Williams T, Bridson D (1989) Chlorogenic acids and caffeine as possible taxonomic criteria in Coffea and Psilanthus. Phytochemistry 28:829–838CrossRefGoogle Scholar
  19. Collona JP (1972) Contribution à l’étude de la culture in vitro d’embryons de caféiers. Action de la cafféine. Café cacao Thé 16(3):193–203Google Scholar
  20. De Peña M (1995) Development of a stable transformation procedures for the protoplasts of Coffea arabica cv. Colombia. Doctoral thesis. University of Purdue, p␣75Google Scholar
  21. Dublin P (1980a) Multiplication végétative in vitro de l’ Arabusta. Café Cacao Thé 24:281–290Google Scholar
  22. Dublin P (1980b) Induction de bourgeons néoformés et embryogenèse somatique. Deux voies de multiplication végétative in vitro des caféiers cultivées. Café Cacao Thé 24:121–130Google Scholar
  23. Ducos JP, Zamarripa A, Eskes AB, Petiard V (1993) Production of somatic embryos of coffee in a bioreactor. In: Proceedings of 15th colloquium of international coffee science association (ASIC), Montpellier, France, pp 89–96Google Scholar
  24. Ducos JP, Alenton R, Reano JF, Kanchanomai C, Deshayes A, Pétiard V (2003) Agronomic performance of Coffea canephora P. trees derived from large-scale somatic embryo production in liquid medium. Euphytica 131:215–223CrossRefGoogle Scholar
  25. Dufour M, Leroy T, Carasco-Lacombe C et al (2000) Coffee (Coffea sp.) genetic transformation for insect resistance. In: Sera T, Soccol CCR, Pandey A, Roussos S (eds) Coffee biotechnology and quality. Kluwer, Dordrecht (NLD), pp 209–217Google Scholar
  26. Dussert S, Chabrillange N, Engelmann F et al (1997) Cryopreservation of coffee (Coffea arabica L.) seeds: importance of precooling temperature. Cryo-Lett 18:269–276Google Scholar
  27. Dussert S, Chabrillange N, Engelmann F et al (1998) Cryopreservation of seeds of four coffee species (Coffea arabica, C. costatifructa, C. racemosa and C.␣sessiliflora): importance of water content and cooling rate. Seed Sci Res 8:9–15CrossRefGoogle Scholar
  28. Dussert S, Chabrillange N, Jean-Luc M et al (2003) Basis of coffee seed sensitivity to liquid nitrogen exposure: oxidative stress or imbibitional damage? Physiol Plant 119(4):534–539CrossRefGoogle Scholar
  29. Eira MTS, Walters C, Caldas LS et al (1999) Tolerance of Coffea sp. seeds to desiccation and low temperature. Revista Brasileira de Fisiologia Vegetal 11:97–105Google Scholar
  30. Eira MTS, Walters C, Reis RB et al (2002) Conservation of genetic resources of coffee using cryopresvation. In: Seventh international workshop on seed biology, May 11–19, 2002, Salamanca, SpainGoogle Scholar
  31. Etienne BD, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tiss Org Cult 69(3):215–231CrossRefGoogle Scholar
  32. Etienne BD, Bertrand B, Schlönvoigt A et al (2002) The morphological variability within a population of coffee somatic embryos produced in a bioreactor affects the regeneration and the development of plants in the nursery. Plant Cell Tiss Org Cult 68(2):153–162CrossRefGoogle Scholar
  33. Etienne BD, Bertrand B, Vasquez N et al (1999) Direct sowing of Coffea arabica somatic embryos mass-produced in a bioreactor and regeneration of plants. Plant Cell Rep 19:111–117CrossRefGoogle Scholar
  34. Fernandez R, Menendez A (2003) Transient gene expression in secondary somatic embryos from coffee tissues electroporated with the genes GUS and BAR. Electronic J Biotechnol 6:29–38Google Scholar
  35. Florin B, Tesserea H Pétiard V (1993) Conservation à long terme des ressources génétiques de caféier par cryoconservation d’embryons zygotiques et somatiques et de cultures embryogènes. In: Proceedings of 15th colloquium of international coffee science association (ASIC), Montpellier, FranceGoogle Scholar
  36. Fuentes SRL, Calheiros MBP, Manetti-Filho J et al (2000) The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tiss Org Cult 60:5–13CrossRefGoogle Scholar
  37. Ganesh SD, Sreenath HL (1999) Embryo culture in coffee: technique and applications. Indian Coffee 4:7–9Google Scholar
  38. Gillies FM, Jenkins GI, Ashihara H et al (1995) In vitro biosynthesis of caffeine: the stability of N-methyltransferase activity in cell-free preparations from liquid endosperm of Coffea arabica. In: Proceed. 16th international scientific colloquium on coffee, ASIC, Kyoto, pp 599–605Google Scholar
  39. Giridhar P, Indu EP, Ravishankar GA et al (2004a) Influence of Triacontanol on somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex. Fr. In Vitro Cell Dev Biol Plant 40:200–203CrossRefGoogle Scholar
  40. Giridhar P, Indu EP, Vijayaramu D, et al (2003) Effect of silver nitrate on in vitro shoot growth of coffee. Trop Sci 43:144–146CrossRefGoogle Scholar
  41. Giridhar P, Indu EP, Vinod K et al (2004b) Direct somatic embryogenesis from Coffea arabica L. and Coffea canephora P. Ex. Fr. under the influence of ethylene action inhibitor-silver nitrate. Acta Physiol Plant 26:299–305Google Scholar
  42. Giridhar P, Vinod K, Indu EP et al (2004c) Thidiazuron induced somatic embryogenesis in Coffea arabica L.␣and Coffea canephora P ex Fr. Acta Bot Croat 63:25–33Google Scholar
  43. Grezes J, Thomasset B, Thomas D (1993) Coffea arabica protoplast culture: transformation assays. In: Proceedings of 15th colloquium of international coffee science association (ASIC), Montpellier France, pp 745–747Google Scholar
  44. Hatanaka T, Arakawa O, Yasuda T, et al (1991) Effect of plant growth regulators on somatic embryogenesis in leaf cultures of Coffea canephora. Plant Cell Rep 10:179–182CrossRefGoogle Scholar
  45. Hatanaka T, Azuma T, Uchida N et al (1995) Effect of␣plant hormones on somatic embryogenesis of Coffea canephora. In: Proceed. 16th international scientific conference on coffee science, Kyoto, pp 790–797Google Scholar
  46. Hermann FRP, Hass GJ (1975) Clonal propagation of Coffea arabica L. from callus culture. Hort Sci 10:588–589Google Scholar
  47. Hinrichsmeyer GPK, Chammenga HK (1985) Characterization of technical adsorbents for decaffeination process. ASIC 11th international colloquium on coffee, pp 369–380Google Scholar
  48. Jaffe G (2004) Regulating transgenic crops: a comparative analysis of different regulatory processes. Transgen Res 13:5–19CrossRefGoogle Scholar
  49. Keller H, Wanner H, Baumann TW (1972) Caffeine synthesis in fruits and tissue culture of Coffea arabica. Planta 108:338–350CrossRefGoogle Scholar
  50. Kopsch R, Lutz H, Goesswein CF (1989) Process for separation and recovery of caffeine from raw coffee and production of decaffeinated coffee, German federal Republic Patent application, DE 38 06 372␣A1Google Scholar
  51. Kumar V, Sathyanarayana KV, Indu EP et al (2003) Stable transformation and direct regeneration in Coffea canephora by Agrobacterium rhizogenes mediated transformation. Proceedings of 10th congress of federation of Asian and Ocianian Biochemists and Molecular Biologists, p 10Google Scholar
  52. Kumar V, Sathyanarayana KV, Indu EP et al (2004). Post transcriptional gene silencing for down regulating caffeine biosynthesis in Coffea canephora P ex Fr. In: Proceedings of 20th international conference on coffee science (ASIC-2004), Oct 11–15, Bangalore, India, pp 769–774Google Scholar
  53. Kumar V, Satyanarayana KV, Indu EP et al (2006) Stable transformation and direct regeneration in Coffea canephora by Agrobacterium rhizogenes mediated transformation without hairy root phenotype. Plant Cell Rep 25:214–222PubMedCrossRefGoogle Scholar
  54. Leroy T, Henry AM, Royer M et al (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389CrossRefGoogle Scholar
  55. Looser E, Baumann TW, Wanner H (1974) The biosynthesis of caffeine in the coffee plant. Phytochemistry 13:2515–2518CrossRefGoogle Scholar
  56. Madhava Naidu M, Sreenath HL (1999) In vitro culture of zygotic embryos for germplasm preservation. Plant Cell Tiss Org Cult 55:227–230CrossRefGoogle Scholar
  57. Madhava Naidu M, Veluthambi K, Srinivasan CS et al (1998) Agrobacterium mediated transformation in Coffea canephora. Dev Plant Crops Res 46–50Google Scholar
  58. Mamatha HN, Sreenath (2000) Isolation and culture of coffee protoplasts from embryogenic calli suspension cells. In: International conference on plantation crops 12–15 Dec 2000 at Hyderabad, IndiaGoogle Scholar
  59. Manuel de Feria, Elio Jiménez, Raúl Barbón et al (2003) Effect of dissolved oxygen concentration on␣differentiation of somatic embryos of Coffea arabica cv. Catimor 9722. Plant Cell Tiss Org Cult 72(1):1–6CrossRefGoogle Scholar
  60. Mari S, Englemann F, Chabrillange N et al (1993) Cryopreservation of apices of Coffea racemosa and Coffea␣sessilifora using the encapsulation/dehydration technique. In: Proceedings of 15th colloquium of international coffee science association (ASIC), Montpellier, FranceGoogle Scholar
  61. Mazzafera P, Wingsle G, Olsson O et al (1994) S-adenosyl-l-methionine: theobromine 1-N-methyltransferase, an enzyme catalyzing the synthesis of caffeine in coffee. Phytochemistry 37:1577–1584CrossRefGoogle Scholar
  62. Mette MF, Aufsatz W, van der Winden J et al (2000) Transcriptional gene silencing and promoter methylation triggered by double standard RNA. EMBO J 19:5194–5201PubMedCrossRefGoogle Scholar
  63. Mizuno K, Kato M, Irino F et al (2003a) The first committed step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthases in coffee (Coffea arabica L.). FEBS Lett 547(1–3):56–60CrossRefGoogle Scholar
  64. Mizuno K, Okuda A, Kato M, et al (2003b) Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.). FEBS Lett 534(1–3):75–81CrossRefGoogle Scholar
  65. Molina DM, María E, Aponte et al (2002) The effect of genotype and explant age on somatic embryogenesis of coffee. Plant Cell Tiss Org Cult 71(2):117–123CrossRefGoogle Scholar
  66. Muniswamy B, Sreenath HL (1995) High frequency somatic embryogenesis form cultured leaf explants of Coffea canephora on a single medium. J Coffee Res 25(2):98–101Google Scholar
  67. Muniswamy B, Sreenath HL (1996) Effect of kanamycin on callus induction and somatic embryogenesis in cultured leaf tissues on Coffea canephora Pierre (Robusta). J Coffee Res 26(1):44–51Google Scholar
  68. Mycock DJ, Wesley-Smith J, Berjak P (1995) Cryopreservation of somatic embryos of four species with and without cryoprotectant pre-treatment. Annal Bot 75:331–336CrossRefGoogle Scholar
  69. Neuenschwander B, Baumann T (1991) A novel type of somatic embryogenesis in Coffea arabica. Plant Cell Rep 10:608–612Google Scholar
  70. Nishibata T, Azuma T, Uchida N et al (1995) Amino acids on somatic embryogeneis in Coffea arabica. In: Proceed. 16th international scientific colloquium on coffee, ASIC, Kyoto, pp 839–844Google Scholar
  71. Noriega C, Söndahl MR (1993) Arabica coffee micropropagation through somatic embryogenesis via bioreactors. In: Proceed. 15th international scientific colloquium on coffee, ASIC, Montpellier, France, pp 73–81Google Scholar
  72. Normah MN, Vengadasalam M (1992) Effects of moisture content on cryopreservation of Coffea and Vigna seeds and embryos. Cryo Lett 13(3):199–208Google Scholar
  73. Ocampo CA, Manzanera LM (1991) Advances in genetic manipulation of the coffee plant. In: Proceed. 14th international scientific colloquium on coffee, ASIC, San Francisco, USA, pp 378–382Google Scholar
  74. Ogawa M, Herai Y, Koizumi N et al (2001) 7-Methylxanthine methyltransferase of coffee plants. J Biol Chem 276:8213–8218PubMedCrossRefGoogle Scholar
  75. Ogita S, Uefuji H, Morimoto M et al (2004) Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54:931–941PubMedCrossRefGoogle Scholar
  76. Ogita S, Uefuji H, Yamaguchi Y et al (2003) RNA interference: producing decaffeinated coffee plants. Nature 423:823PubMedCrossRefGoogle Scholar
  77. Oliveiro GF, Peter D, Marnix P et al (1998) Susceptibility of the Coffee Leaf Miner (Perileucoptera spp.) to Bacillus thuringensis O-endotoxins: a model for transgenic perennial crops resistant to endocarpic insects. Curr Microbiol 36:175–179CrossRefGoogle Scholar
  78. Orozco FJ, Schieder D (1982) Eislamento y cultivo de protoplastos a partir de hojas de café. Cenicafe 33:129–136Google Scholar
  79. Perthuis B, Pradon JL, Montagnon C et al (2005) Stable resistance against the leaf miner Leucoptera coffeella expressed by genetically transformed Coffea canephora in a pluriannual field experiment in French Guiana. Euphytica 144(3):321–329CrossRefGoogle Scholar
  80. Quiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R et al (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20:1141–1149CrossRefGoogle Scholar
  81. Quiroz-Figueroa M, Méndez-Zeel A, Larqué-Saavedra VM et al (2001) Picomolar concentrations of salicylates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Rep 20:679–684CrossRefGoogle Scholar
  82. Raghuramulu Y, Purushotham K, Sreenivasan MS et al (1987) In vitro regeneration of coffee plantlets in India (Brief note). J Coffee Res 17(2):57–64Google Scholar
  83. Raghuramulu Y, Sreenivasan MS, Ramaiah PK (1989) Regeneration of coffee plantlets through tissue culture techniques in India. J Coffee Res 19(1):30–38Google Scholar
  84. Ramalakshmi K, Raghavan B (1999) Caffeine in Coffee: its removal. Why and How? Crit Rev Food Sci Nutr 39(5):441–456PubMedCrossRefGoogle Scholar
  85. Ribas AF, Kobayashi AK, Pereira LFP Vieira LGE (2005) Genetic transformation of Coffea canephora by particle bombardment. Biol Plant 49(4):493–497CrossRefGoogle Scholar
  86. Roberts MF, Waller GR (1979) N-methyltransferases and 7-methyl-N 9-nucleoside hydrolase activity in Coffea arabica and the biosynthesis of caffeine. Phytochemistry 18:451–455CrossRefGoogle Scholar
  87. Roger PJ, Richardson NJ (1993) Why do we like drinks that contains caffeine. Trends Food Sci Technol 4(4):108–111CrossRefGoogle Scholar
  88. Santa Ram A, Indu EP, Chandrashekar A et al (2005) Identification of low caffeine coffees in some interspecific hybrids and their progenies. J Plantation Crops 33(2):90–94Google Scholar
  89. Satyanarayana KV, Kumar V, Chandrashekar A et al (2004) Cloning and characterization of promoter for N-methyl transferase gene from coffee. In: Proceedings of 20th international conference on coffee science (ASIC-2004), Oct 11–15, Bangalore, India, pp 783–786Google Scholar
  90. Satyanarayana KV, Vinod Kumar, Chandrashekar A, Ravishankar GA (2005) Isolation of promoter for N-methyltransferase gene associated with caffeine biosynthesis in Coffea canephora. J Biotechnol 119:20–25PubMedCrossRefGoogle Scholar
  91. Schulthess BH, Baumann TW (1995) Are xanthosine and 7 methylxanthosine caffeine precuasal? Phytochemistry 39(6):1363–1370CrossRefGoogle Scholar
  92. Sharp WR, Caldas LS, Crocomo OJ et al (1973) Production of Coffea arabica callus of three ploidy levels and subsequent morphogenesis. Phyton 31:67–74Google Scholar
  93. Silvarolla MB, Mazzafera P, Fazuoli LC (2004) A naturally decaffeinated arabica coffee. Nature 429:826PubMedCrossRefGoogle Scholar
  94. Smith RF (1985) A history of coffee. In: Clifford MN, Willson KC (eds) Coffee—botany, biochemistry and production of beans and beverage. The avi publishing company, Inc., Westport, Connecticut, pp 1–12Google Scholar
  95. Söndahl MR, Chapman MS, Sharp NR (1980) Protoplast liberation, cell wall construction and callus proliferation in Coffea arabica L. callus tissues. Turrialba 30:161–165Google Scholar
  96. Söndahl MR, Sharp W (1977) High frequency induction of somatic embryos in cultured leaf explants of Coffea arabica L. Z. Pflanzen 81:395–408Google Scholar
  97. Spiral J, Leroy T, Paillard M et al (1999) Transgenic Coffee (Coffea species). In: Biotechnology in agriculture and forestry, vol 44 Transgenic trees (ed. YPS Bajaj), Springer-Verlag, Berlin Heidelberg, pp 55–76Google Scholar
  98. Spiral J, Thierry C, Paillard M et al (1993) Obtention de plantules de Coffea canephora Pierre (Robusta) transformés par Agrobacterium rhizogenes. Comptes Rendus d’Académie des Sciences Series 3(316):1–6Google Scholar
  99. Sreenath HL, Muniswamy B, Naidu MM et al (1992) Embryo culture of three interspecific crosses in coffee. J Plant Crops 20(Suppl.):243–247Google Scholar
  100. Sreenath HL, Shantha HM, Harinath Babu K et al (1995) Somatic embryogenesis from integument (perisperm) cultures of coffee. Plant Cell Rep 14:670–673CrossRefGoogle Scholar
  101. Staritsky G (1970) Embryoid formation in callus cultures of coffee. Acta Bot Neerlandica 19:509–514Google Scholar
  102. Sugiyama M, Matsuoka C, Takagi T (1995) Transformation of coffee with Agrobacterium rhizogenes. In: Proceed. 16th international scientific colloquium on coffee, ASIC, Paris, France, pp 853–859Google Scholar
  103. Teisson C, Alvarad D, Berthouly M et al (1995) Culture in vitro par immersion temporaire: un nouveau récipient. Plantations Recherche Dév 2(5):29–31Google Scholar
  104. Uefuji H, Ogita S, Yamaguchi Y et al (2003) Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant Physiol 132:372–380PubMedCrossRefGoogle Scholar
  105. UK GM Science Review Panel (2003) GM science review, first report. An open review of the science relevant to GM crops and food based on interests and concerns of the public. http://www.gmsciencedebate.org.uk/report/default. htm#WrstGoogle Scholar
  106. UK GM Science Review Panel (2004) GM science review, second report. An open review of the science relevant to GM crops and food based on interests and concerns of the public. http://www.gmsciencedebate. org.uk/report/default. htm#secondGoogle Scholar
  107. van Boxtel J, Berthouly M (1996) High frequency somatic embryogenesis from coffee leaves: factors influencing embryogenesis, and subsequent proliferation and regeneration in liquid medium. Plant Cell Tiss Org Cult 44:7–17CrossRefGoogle Scholar
  108. van Boxtel J, Berthouly M, Carasco C et al (1995). Transient expression of beta-glucuronidase following biolistic delivery of foreign DNA into coffee. Plant Cell Rep 14(12):748–752CrossRefGoogle Scholar
  109. van Boxtel J (1994) Studies on genetic transformation of coffee by using electroporation and biolistic method. Abstract available from Internet: http://www.agralin.nl/wda/abstracts/ab1880.htmlGoogle Scholar
  110. Waldhausser SSM, Gillies FM, Crozier A et al (1997b) Separation of the N-7 methyltransferase, the key enzyme in caffeine biosynthesis. Phytochemistry 45:1407–1414CrossRefGoogle Scholar
  111. Waldhausser SSM, Kretschmar JA, Baumann TW (1997a) N-methyltransferase activities in caffeine biosynthesis: biochemical characterization and time course during leaf development of Coffea arabica. Phytochemistry 44:853–859CrossRefGoogle Scholar
  112. Waller GR, MacVean CD, Suzuki T (1983) High production of caffeine and related enzyme activities in callus␣cultures of Coffea arabica L. Plant Cell Rep 2:109–112CrossRefGoogle Scholar
  113. Waller GR, Suzuki T (1989) Caffeine metabolism by Coffea arabica L. fruit, ASIC 13th international colloquium on coffee, Paipa, Colombia, pp 351–361Google Scholar
  114. Yasuda T, Tahara M, Hatanaka T, Nishibata T, Yamaguchi T (1995) Clonal propagation through somatic embryogenesis of coffee species. In: Proceed. 16th international scientific colloquium on coffee. ASIC, Kyoto, pp 537–541Google Scholar
  115. Zamarripa A (1993) Étude et dÉvelopment de l’embryogenèse en millieu liquid du cafÉier (Coffea canephora P., Coffea arabica L. et l’hybrid Arabusta). Thèse de doctorat, École National SupÉrieure Agronomique, Rennes, France, p 191Google Scholar
  116. Zamarripa A, Ducos JP, Tessereau H et al (1991) Developpment d’un procède de multiplication en masse du caféier par embryogènese somatique au millieu liquide. In: Proceedings of the 14th colloquium of international coffee science association (ASIC), San␣Francisco, USA, pp 392–402Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Vinod Kumar
    • 1
  • M. Madhava Naidu
    • 2
  • G. A. Ravishankar
    • 1
    Email author
  1. 1.Plant Cell Biotechnology DepartmentCentral Food Technological Research InstituteMysoreIndia
  2. 2.Plantation Products, Spices & Flavor Technology DepartmentCentral Food Technological Research InstituteMysoreIndia

Personalised recommendations