Plant Cell, Tissue and Organ Culture

, Volume 86, Issue 2, pp 233–238 | Cite as

Efficient Somatic Embryogenesis in Alstroemeria

  • J. B. Kim
  • C. J. J. M. RaemakersEmail author
  • E. Jacobsen
  • R. G. F. Visser
Original paper


In Alstroemeria high frequencies of compact embryogenic callus (CEC) induction (40%) and friable embryogenic callus (FEC) induction (15%) were obtained from nodes with axil tissue cultured first on a Murashige and Skoog (MS) medium supplemented with 10 μM thidiazuron and 0.5 μM indole-3-butyric acid and after that on a Schenk and Hildebrandt (SH) medium supplemented with 9.1 μM 2,4-dichlorophenoxy acetic acid and 2.2 μM benzylaminopurine (BA). Both types of callus were maintained on modified MS medium supplemented with 20.8 μM picloram. CEC and FEC formed somatic embryos and subsequently plants when transferred to MS medium supplemented with 2.2 μM BA. Plants were produced after 12 weeks (CEC) or after 16 weeks (FEC) of culture. Regenerated plants were established in the greenhouse and flowered normally.


Alstroemeria Compact embryogenic callus Friable embryogenic callus Regeneration Somatic embryos 



2,4-dichlorophenoxy acetic acid




Compact embryogenic callus


Callus induction medium


Callus proliferation medium


Friable embryogenic callus


Indole-3-butyric acid


2-(N-morpholino)ethanesulfonic acid


Murashige and Skoog (1962) medium


α-naphthaleneacetic acid


Nonembryogenic callus


Propagation medium


Somatic embryo


Schenk and Hildebrandt (1972) medium


Shoot induction medium


N-phenyl-N′-1,2,3-thidiazo-5-yl urea or thidiazuron


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Royal van Zanten (the Netherlands) who kindly provided in vitro plants of the genotype VV024. We thank Dirkjan Huigen and Bert Essenstam for taking care of the plants in the greenhouse. This research was partly financed by the Ministry of Education, Republic of Korea.


  1. Akutsu M, Sato H (2002) Induction of proembryos in liquid culture increases the efficiency of plant regeneration from Alstroemeria calli. Plant Sci 163:475–479CrossRefGoogle Scholar
  2. Blom TJ, Piott BD (1990) Constant soil temperature influences flowering of Alstroemeria. HortScience 25:189–191Google Scholar
  3. Brisibe EA, Gajdosova A, Olesen A, Andersen SB (2000) Cytodifferentiation and transformation of embryogenic callus lines derived from anther culture of wheat. J Exp Bot 51:187–196PubMedCrossRefGoogle Scholar
  4. Chekpkairor MJ, Waithaka K (1988) Growth and flowering of Alstroemeria. Acta Hortic 218:115–120Google Scholar
  5. Gonzalez-Benito E, Alderson PG (1992) Regeneration from Alstroemeria callus. Acta Hortic 280:135–138Google Scholar
  6. Hutchinson MJ, Tsujita JM, Saxena PK (1994) Callus induction and plant regeneration from mature zygotic embryos of a tetraploid Alstroemeria (A. pelegrina X A. psittacina). Plant Cell Rep 14:184–187CrossRefGoogle Scholar
  7. Hutchinson MJ, Senaratna T, Tsujita JM, Saxena PK (1997) Somatic embryogenesis in liquid cultures of a tetraploid Alstroemeria. Plant Cell Tiss Org Cult 47:293–297CrossRefGoogle Scholar
  8. Kamo K, Blowers A, Smith F, Van Eck J, Lawson R (1995) Stable transformation of Gladiolus using suspension cells and callus. J Am Soc Hort Sci 120:347–352Google Scholar
  9. Lin HS, De Jeu MJ, Jacobsen E (1997) Direct shoot regeneration from excised leaf explants of in vitro grown seedlings of Alstroemeria L. Plant Cell Rep 16:770–774CrossRefGoogle Scholar
  10. Lin HS, De Jeu MJ, Jacobsen E (1998) Formation of shoots from leaf axils of Alstroemeria: The effects of the position on the stem. Plant Cell Tiss Org Cult 52:165–169CrossRefGoogle Scholar
  11. Lin HS, De Jeu MJ, Jacobsen E (2000a) Development of a plant regeneration system based on friable embryogenic callus in the ornamental Alstroemeria. Plant Cell Rep 19:529–534CrossRefGoogle Scholar
  12. Lin HS, Van der Toorn C, Raemakers CJJM, Visser RGF, De Jeu MJ, Jacobsen E (2000b) Genetic transformation of Alstroemeria using particle bombardment. Mol Breeding 6:369–377CrossRefGoogle Scholar
  13. Munyikwa TRI, Raemakers CJJM, Schreuder M, Kok R, Schippers M, E Jacobsen, Visser RGF (1998) Pinpointing towards improved transformation and regeneration of cassava (Manihot esculenta Crantz). Plant Sci 135:87–101CrossRefGoogle Scholar
  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  15. Raemakers CJJM, Schreuder M, Pereira I, Munyikwa T, Jacobsen E, Visser RGF (2001) Progress made in FEC transformation of cassava. Euphytica 120:15–24CrossRefGoogle Scholar
  16. Robinson K, Firoozababy E (1993) Transformation of floricultural crops. Sci Hortic 55:83–99CrossRefGoogle Scholar
  17. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous plant cell cultures. Can J Bot 50:199–204CrossRefGoogle Scholar
  18. Somers DA, Rines HW, Gu W, Kaeppler HF, Bunshnell WR (1992) Fertile, transgenic oat plants. Bio-Technol 10:1589–1594Google Scholar
  19. Torbert KA, Rines HW, Somers DA (1995) Use of paromomycin as a selectable agent for oat transformation. Plant Cell Rep 14:635–640CrossRefGoogle Scholar
  20. Van Schaik CE, Posthuma A, De Jeu MJ, Jacobsen E (1996) Plant regeneration through somatic embryogenesis from callus induced on immature embryos of Alstroemeria spp. L. Plant Cell Rep 15:377–380CrossRefGoogle Scholar
  21. Van Schaik CE, Van der Toorn C, De Jeu MJ, Raemakers CJJM, Visser RGF (2000) Towards genetic transformation in the monocot Alstroemeria L. Euphytica 115:17–26CrossRefGoogle Scholar
  22. Van Zaayen A (1995) Virus and virus-like diseases of bulb and flower crops. In: Loebenstein G, Lawson RH, Brunt AA (eds) Wiley Publishers, Chichester, West Sussex, UK, pp 237–249Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • J. B. Kim
    • 1
    • 2
  • C. J. J. M. Raemakers
    • 1
    Email author
  • E. Jacobsen
    • 1
  • R. G. F. Visser
    • 1
  1. 1.Laboratory of Plant Breeding, The Graduate School of Experimental Plant SciencesWageningen UniversityWageningenThe Netherlands
  2. 2.Central Research Institute Neobio Co., LtdKyong-kiKorea

Personalised recommendations