Plant Cell, Tissue and Organ Culture

, Volume 85, Issue 3, pp 353–359

Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing

  • H. Lata
  • X.C. Li
  • B. Silva
  • R.M. Moraes
  • L. Halda-Alija
Article

Abstract

The presence of latent bacteria is a serious problem in plant tissue cultures. While endophytes are generally beneficial to plants in situ, they may affect culture growth under the modified conditions in vitro. The present study was undertaken to identify and characterize endophytic bacteria associated with the medicinal plant Echinacea in tissue culture. Based on classical microbiological tests and 16S rRNA analyses, it was found that endophytic bacteria associated with aseptically micropropagated Echinacea plantlets are representatives of several genera, Acinetobacter, Bacillus, Pseudomonas, Wautersia (Ralstonia) and Stenotrophomonas. Based on TLC and HPLC analyses, we found that Pseudomonas stutzeri P3 strain produces plant hormone, auxin (indole-3-acetic acid, IAA). Antibiotic resistance was also assessed as a virulence factor. The majority of endophytic bacteria were resistant to the antibiotic kanamycin, but susceptible to chloramphenicol. Recommendations for propagating Echinaceain vitro cultures involve the addition of chloramphenicol, tetracycline, and ampicillin, antibiotics that cause no side effects on these plant species.

Keywords

antibiotic resistance auxin Echinacea endophytes medicinal plants molecular markers 

Abbreviations

IAA

indole-3-acetic acid

MS

Murashige and Skoog medium

NA

nutrient agar

NB

nutrient broth

TSA

tryptic soy agar

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JWL, Azevedol JL, (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants Appl. Environ. Microbiol. 68: 4906–4914PubMedCrossRefGoogle Scholar
  2. Bacon CW, Glenn AE, Hinton DM, (2002) Isolation, in planta detection and culture of endophytic bacteria and fungi In: Hurst CJ, (ed) Manual of Environmental Microbiology 2nd edn ASM Press Washington, DC (pp. 543–553)Google Scholar
  3. Bauer AW, Kirby WM, Sherris JC, Turck M, (1966) Antibiotic susceptibility testing by a standardized single disk method Am. J. Clin. Path. 45: 493–496PubMedGoogle Scholar
  4. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL, (2002) GenBank Nucleic Acids Res. 30:17–20PubMedCrossRefGoogle Scholar
  5. Binns SE, Bernard RB, Arnason JT, (2002) A taxonomic revision of Echinacea (Asteraceae: Heliantheae) Syst. Bot. 27: 610–632Google Scholar
  6. Chromas 2.31 for windows (2005) Copyright © Technelysium Pty Ltd, AustraliaGoogle Scholar
  7. Falkiner FR, (1990) The criteria for choosing an antibiotic for control of bacteria in plant tissue culture Int. Assoc. Plant Tiss. Cult. Newslett. 60: 14–21Google Scholar
  8. Fintrac Market Survey: The US market for Medicinal herbs (2001) Rural Agriculture Incomes with a Sustainable Environment March: 1–9Google Scholar
  9. Giles JR, Palat CT, Chien SH, Chang ZG, Kennedy DT, (2000) Evaluation of Echinacea for treatment of common colds Pharmacotherapy 20: 690–697PubMedCrossRefGoogle Scholar
  10. Halda-Alija L, (2003) Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L Can. J. Microbiol. 49: 781–787PubMedCrossRefGoogle Scholar
  11. Halda-Alija L, (2004) Incidence of antibiotic-resistant Klebsiella pneumoniae & Enterobacter species in freshwater wetlands Lett. Appl. Microbiol. 39: 445–450PubMedCrossRefGoogle Scholar
  12. Hall C III, (2003) Echinacea as a functional food ingredient Adv. Food Nutr. Res. 47: 114–173Google Scholar
  13. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW, (1997) Bacterial endophytes in agricultural crops Can. J. Microbiol. 43: 895–914CrossRefGoogle Scholar
  14. Hennerty MJ, Upton ME, Harris DP, Eaton RA, James DJ, (1988) Microbial contamination of in vitro cultures of apple stocks M26 and M9 Acta Hortic. 225: 129–137Google Scholar
  15. Holland MA, Polacco JC, (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 197–209CrossRefGoogle Scholar
  16. Leifert C, Cassells AC, (2001) Microbial hazards in plant tissue and cell cultures In Vitro Cell Dev. Biol. Plant 37: 133–138CrossRefGoogle Scholar
  17. Leifert C, Woodward S, (1998) Laboratory contamination management: the requirement for microbiological quality assurance Plant Cell Tiss. Org. Cult. 52: 83–88CrossRefGoogle Scholar
  18. Lindenmuth GF, Lindenmuth EB, (2000) The efficacy of Echinacea compounds herbal tea preparation on the severity and duration of upper respiratory and flue symptoms: a randomized, double blind placebo-controlled study J. Altern. Complem. Med. 6: 327–634CrossRefGoogle Scholar
  19. Lata H, Andrade Z, Schaneberg B, Bedir E, Khan I, Moraes RM, (2003) Arbuscular mycorrhizal inoculation enhances survival rates and growth of micropropagated plantlets of Echinacea pallida Planta Med. 69: 673–676CrossRefGoogle Scholar
  20. Lata H, Andrade Z, Bedir E, Moraes RM, (2004) Mass Propagation of Echinacea angustifolia: a protocol refinement using shoot encapsulation and temporary immersion liquid system Acta Hortic. 629: 409–414Google Scholar
  21. Leboffe MJ, Pierce BE, (2002) Microbiology Laboratory Theory and Application. Morton Publishing Company ColoradoGoogle Scholar
  22. Leifert C, Ritchie JY, Waites WM, (1991) Contaminants of plant tissue and cell cultures World J. Microbiol. Biotechnol. 7: 452–469CrossRefGoogle Scholar
  23. McGreoger RL, (1968) A new species and two new varieties of Echinacea (Compositae) Trans. Kansas Acad. Sci. 70: 366–370CrossRefGoogle Scholar
  24. Minkwitz A, Berg G, (2001) Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia J. Clin. Microbiol. 39: 139–145PubMedCrossRefGoogle Scholar
  25. Murashige T, Skoog F, (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures Physiol. Plant. 15: 473–497CrossRefGoogle Scholar
  26. Nowak J, Asiedu SK, Bensalim S, Richards J, Stewart A, Smith C, Stevens D, Sturz AV, (1998) From laboratory to applications: challenges and progress with in vitro dual cultures of potato and beneficial bacteria Plant Cell Tiss. Org. Cult. 52: 97–103CrossRefGoogle Scholar
  27. Pugh N, Balachandran P, Lata H, Dayan FE, Joshi V, Bedir E, Makino T, Duke SO, Moraes RM, Khan I, Pasco DS, (2005) Melanin: dietary mucosal immune stimulant from Echinacea and other botanical supplements Int. Immunopharmacol. 5: 637–647PubMedCrossRefGoogle Scholar
  28. Rediers H, Bonnecarrere V, Rainey PB, Hamonts K, Vanderleyden J, Mot RD, (2003) Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15 Appl. Environ. Microbiol. 69: 6864–6874PubMedCrossRefGoogle Scholar
  29. Rius N, Fuste MC, Guasp C, Lalucat J, Loren JG, (2001) Clonal population structure of Pseudomonas stutzeri, a species with exceptional genetic diversity J. Bacteriol. 183: 736–744PubMedCrossRefGoogle Scholar
  30. Saitou N, Nei M, (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees Mol. Biol. Evol. 4: 406–425PubMedGoogle Scholar
  31. Salih S, Waterworth H, Thompson DA, (2001) Role of plant tissue culture in international exchange and quarantine of germplasm in the United States and Canada HortScience 36: 1015–1021Google Scholar
  32. Tang WH, (1994) Yield-increasing bacteria, (YIB) and biocontrol of sheath blast of rice In: Ryder MH, Stephens PM, Bowen GD, (eds) Improving Plant Productivity with Rhizobacteria. Commonwealth Scientific and Industrial Research Organization Adelaide, Australia (pp. 267–278)Google Scholar
  33. Thomas P, (2004) In vitro decline in plant cultures: detection of a legion of covert bacteria as the cause for degeneration of long term micropropagated triploid watermelon cultures. Plant Cell Tiss. Org. Cult. 77: 173–179CrossRefGoogle Scholar
  34. Van den Houwe I, Swennen R, (2000) Characterization and control of bacterial contaminants in in vitro cultures of banana (Musa spp.) Acta Hortic. 530: 69–79Google Scholar
  35. Vaneechoutte M, Kampfer P, De Baere T, Falsen E, Verschraeren G, (2004) Wautersia gen. nov., a new genus accomdating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al., 1990) comb Nov. Int. J. Syst. Evol. Microbiol. 54: 317–327CrossRefGoogle Scholar
  36. You CB, Song HX, Wang JP, Lin M, Hai WL, (1991) Association of Alcaligenes faecalis with wetland rice Plant Soil 137: 81–85CrossRefGoogle Scholar
  37. Zelena E, Kutacek M, Cermak V, (1988) Fate of root applied indoleacetic acid and its influence on growth of plants In: Kutacek M, Bandurski RS, Krekule J, (eds) Physiology and Biochemistry of Auxins in Plants SPB Academic Publishing The Hague, (pp. 371–376)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • H. Lata
    • 1
  • X.C. Li
    • 1
  • B. Silva
    • 1
  • R.M. Moraes
    • 1
  • L. Halda-Alija
    • 1
    • 2
  1. 1.National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of PharmacyThe University of Mississippi UniversityUSA
  2. 2.Department of BiologyThe University of MississippiUniversityUSA

Personalised recommendations