Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 83, Issue 2, pp 201–208 | Cite as

Extracellular Matrix Surface Network During Plant Regeneration in Wheat Anther Culture

  • R. Konieczny
  • J. Bohdanowicz
  • A.Z. Czaplicki
  • L. Przywara
Article

Abstract

Androgenic plant regeneration from wheat anther callus was accompanied by the formation of a conspicuous extracellular matrix surface network (ECMSN) around the induced callus cells and young embryo-like structures. Microscopic observations at the onset of regeneration revealed the presence of two distinct types of cells on the callus surface: large, loosely attached parenchymatous cells and small tightly packed meristematic cells arranged in multicellular clusters. Parenchyma cells of the callus had smooth surface, while on the surface and between the cells of multicellular clusters numerous fine fibrils of ECMSN were observed. The structural arrangement of the ECMSN changed during culture. On the surface of globular embryo-like structures, before protoderm formation, the ECMSN was the most abundant and arranged as a compact layer of secretion with wide strands visible at the cell junctions. Further development of globular embryos was disturbed, giving rise to branched structures outlined by continuous epidermis. The development of such regenerants was accompanied by gradual degradation of the extracellular network and finally its complete disappearance. Digestion with protease did not destroy the network. Treatment of the calluses with chloroform and washing with ether–methanol led to partial destruction of the network, while digestion with pectinase removed the network completely and resulted in the collapse of surface embryo cells.

Keywords

androgenesis scanning electron microscopy transmission electron microscopy Triticum aestivum 

Abbreviations

2,4-D

2,4-dichlorophenoxyacetic acid

ECM

extracellular matrix

ECMSN

extracellular matrix surface network

NAA

α-napthaleneacetic acid

SEM

scanning electron microscopy

TEM

transmission electron microscopy

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baluška, F, Šamaj, J, Wojtaszek, P, Volkman, D, Menzel, D 2003Cytoskeleton–plasma membrane–cell wall continuum in plants. Emerging links revisitedPlant Physiol.133482491CrossRefPubMedGoogle Scholar
  2. Bobák, M, Hlavačka, A, Ovečka, M, Šamaj, J 1999Effect of trifluralin and colchicine on the extracellular matrix surface networks during early stages of direct somatic embryogenesis of Drosera rotundifolia LJ. Plant Physiol.155387392Google Scholar
  3. Bobák, M, Šamaj, J, Hlinkova, E, Hlavačka, A, Ovečka, M 2003/4Extracellular matrix in early stages of direct somatic embryogenesis in leaves of Drosera spathulataBiol. Plant.47161162CrossRefGoogle Scholar
  4. Bobák, M, Šamaj, J, Preťová, A, Blehová, A, Hlinková, E, Ovečka, M, Hlavačka, A, Kutarňová, Z 2004The histological analysis of indirect somatic embryogenesis on Drosera spathulata LabillActa Physiol. Plant.26353361Google Scholar
  5. Carpita, NC, Tierney, M, Campbell, M 2001Molecular biology of the plant cell wall: searching for the genes that define the structure, architecture and dynamicsPlant Mol. Biol.4715CrossRefPubMedGoogle Scholar
  6. Chapman, A, Helleboid, S, Blerwacq, AS, Vasseur, J, Hilbert, JL 2000Removal of the fibrillar network surrounding Cichorium somatic embryos using cytoskeleton inhibitors: analysis of proteic compoundsPlant Sci.150103114CrossRefGoogle Scholar
  7. Dubois, T, Guedira, M, Dubois, J, Vasseur, J 1991Direct somatic embryogenesis in leaves of Cichorium. A histological and SEM study of early stagesProtoplasma162120127Google Scholar
  8. Dubois, T, Dubois, J, Guedira, M, Diop, A, Vasseur, J 1992SEM characterization of an extracellular matrix around somatic proembryos in roots of CichoriumAnn. Bot.70119124Google Scholar
  9. Etzler ME (1998) Oligosaccharide signaling of plant cells J. Cell. Biochem. Suppls 30/31: 123–128Google Scholar
  10. Heslop-Harrison, Y 1977The pollen stigma interaction: pollen-tube penetration in CrocusAnn. Bot.41913922Google Scholar
  11. Iwai, H, Kikuchi, A, Kobayashi, T, Kamada, H, Satoh, S 1999High levels of non-methylesterified pectins and low levels of peripherally located pectins in loosely attached non-embryogenic callus of carrotPlant Cell Rep.18561566CrossRefGoogle Scholar
  12. Jasik, J, Salajova, T, Salaj, J 1995Developmental anatomy and ultrastructure of early somatic embryos in European black pine (Pinus nigra Arn.)Protoplasma185205211CrossRefGoogle Scholar
  13. Kachar, B, Parakkal, M, Frex, J 1990Structural basis form mechanical transduction in the frog vestibular sensory apparatus: I. The otholitic membraneHearing Res.45179190CrossRefGoogle Scholar
  14. Knox, JP 1997The use of antibodies to study the architecture and developmental regulation of plant cell wallsInt. Rev. Cytol.17179120PubMedGoogle Scholar
  15. Konieczny, R, Czaplicki, AZ, Golczyk, H, Przywara, L 2003Two pathways of plant regeneration in wheat anther culturePlant Cell Tiss. Org. Cult.73177187CrossRefGoogle Scholar
  16. Kreuger, M, van Holst, GJ 1995Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota LPlanta197135141CrossRefGoogle Scholar
  17. Ovečka, M, Bobák, M 1999Structural diversity of Papaver somniferum L. cell surfaces in vitro depending on particular steps of plant regeneration and morphogenetic programActa Physiol. Plant.21117126Google Scholar
  18. Ozias-Akins, P, Vasil, IK 1982Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): evidence for somatic embryogenesisProtoplasma11095105CrossRefGoogle Scholar
  19. Ozias-Akins, P, Vasil, IK 1983Improved efficiency and normalization of somatic embryogenesis in Triticum aestivum (wheat)Protoplasma1174044CrossRefGoogle Scholar
  20. McCann, MC, Wells, B, Roberts, K 1990Direct visualization of cross-links in the primary plant cell wallJ. Cell Sci.96323334Google Scholar
  21. Pedroso, MC, Pais, MS 1992A scanning electron microscopy and X-ray microanalysis study during induction of morphogenesis in Camellia japonica LPlant Sci.8799108CrossRefGoogle Scholar
  22. Pedroso, MC, Pais, MS 1993Direct embryo formation in leaves of Camellia japonica LPlant Cell Rep.12639643CrossRefGoogle Scholar
  23. Rumyantseva, NI, Šamaj, J, Ensikat, HJ, Salnikov, VV, Kostyukova, YA, Baluška, F, Volkman, D 2003Changes in the extracellular matrix surface network during cyclic reproduction of proembryogenic cell complex in the Fagopyrum tataricum (L.) Gaertn callusDokl. Biol. Sci.391375378CrossRefPubMedGoogle Scholar
  24. Rybczyński, JJ, Simonson, RI, Beanziger, PS 1991Evidence for microspore embryogenesis in wheat anther culture In Vitro Dev. Biol.27P168174Google Scholar
  25. Šamaj, J, Bobák, M, Blehová, A, Krištin, J, Auxtová-Šamajowá, O 1995Developmental SEM observations on an extracellular matrix in embryogenic calluses of Drosera rotundifolia and Zea maysProtoplasma1864549CrossRefGoogle Scholar
  26. Šamaj, J, Baluška, F, Bobák, M, Volkman, D 1999Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4Plant Cell Rep.18369374CrossRefGoogle Scholar
  27. Sondahl, MR, Salisburi, JL, Sharp, WR 1979SEM characterization of embryogenic tissue and globular embryos during high frequency somatic embryogenesis in coffee callus cellsZ. Pflanzenphysiol.94185187Google Scholar
  28. Spurr, AR 1969A low-viscosity epoxy resin embedding medium for electron microscopyJ. Ultra. R.263143CrossRefGoogle Scholar
  29. Valieva AI, Rumyantseva NI & Lozovaya VV (1977) Dynamics of polysaccharide composition of cell walls of Tatar buckwheat calluses with different morphogenic ability. Proceedings of the VI Russian Conference Structure and Dynamics of Molecular Systems, Joshkar-Ola, Russia, June 23–28, 1997, part 3 (56 p.)Google Scholar
  30. Verdeil, JL, Hocher, V, Huet, C, Grosdemange, F, Escoute, J, Ferriere, N, Nicole, M 2001Ultrastructural changes in coconut calluses associated with the acquisition of embryogenic competenceAnn. Bot.88918CrossRefGoogle Scholar
  31. Wang, P, Chen, YR 1983Preliminary study on prediction of height of pollen H generation in winter wheat grown in fieldActa Agron. Sin.9283284Google Scholar
  32. Wojtaszek, P 2001Organismal view of plant and a plant cellActa Biochim. Polon.48443451PubMedGoogle Scholar
  33. Zhuang JJ & Jia X (1983) Increasing differentiation frequencies in wheat pollen callus. In: Cell and Tissue Culture Techniques for Cereal Crop Improvement. Science Press, Beijing, (431 p.)Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • R. Konieczny
    • 1
  • J. Bohdanowicz
    • 2
  • A.Z. Czaplicki
    • 3
  • L. Przywara
    • 3
  1. 1.Department of Plant Cytology and EmbryologyJagiellonian UniversityKrakówPoland
  2. 2.Department of Genetics and CytologyUniversity of GdańskGdańskPoland
  3. 3.Plant Breeding and Acclimatization InstituteBłoniePoland

Personalised recommendations