Plant Cell, Tissue and Organ Culture

, Volume 83, Issue 1, pp 21–32 | Cite as

Genome fidelity during short- and long-term tissue culture and differentially cryostored meristems of silver birch (Betula pendula)

  • Leena Ryynänen
  • Tuija Aronen


Clonal trueness of micropropagated or cryopreserved material is essential, especially with long-living tree species. In this study, the growth rate and morphology of regenerated silver birch (Betula pendula Roth) plants growing in the nursery were evaluated after different treatments: short-term (14 months) and long-term (70 months) tissue culture periods, cryostorage of in vivo buds and cryopreservation of in vitro shoot apices using four different slow cooling cryopreservation protocols with PGD (10% PEG, 10% glucose, 10% DMSO) as cryoprotectant. Genetic fidelity of the regenerated plants compared to the original donor trees was evaluated using RAPD assays together with chromosome analysis. The regenerated plants showed no genetic or phenotypic changes, and can thus be considered as reliable material for any research, breeding or silvicultural activities.

Key words:

chromosomes cryopreservation deciduous tree genetic stability RAPDs tissue culture period 



abscisic acid






long day (16/8 h light/dark photoperiod)


10% polyethylene glycol (w/v), 10% glucose (w/v), and 10% DMSO (v/v) in water


random amplified polymorphic DNAs


short day (8/16 h light/dark photoperiod)


woody plant medium


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronen, T, Häggman, H 1995Differences in Agrobacterium infections in silver birch and Scots pineEur. J. For. Pathol.25197213Google Scholar
  2. Aronen, T, Krajnakova, J, Häggman, H, Ryynänen, L 1999Genetic fidelity of cryopreserved embryogenic cultures of open pollinated Abies cephalonicaPlant Sci.142163172CrossRefGoogle Scholar
  3. Caccavale, A, Lambardi, M, Fabbri, A 1998Cryopreservation of woody plants by axillary bud vitrification: a first approach with poplarActa Horticult.4577983Google Scholar
  4. Cameron, AD 1990Autotetraploid plants from callus cultures of Betula pendula RothTree Physiol.6229234PubMedGoogle Scholar
  5. Chalupa, V 1981In vitro propagation of birch (Betula verrucosa Ehrh.)Biol. Plant. (Praha)23472474Google Scholar
  6. Channuntapipat, C, Sedgley, M, Collins, G 2003Changes in methylation and sturcture of DNA from almond tissues during in vitro culture and cryopreservationJ. Amer. Soc. Hort. Sci.128890897Google Scholar
  7. Cyr D (2000) Cryopreservation: role in clonal propagation and germplasm conservation of conifers. In: Engelmann F & Takagi H (eds) Cryopreservation of Tropical Germplasm: Current Research Progress and Application. IPGRI Rome / JIRCAS Tsukuba, pp. 261–268Google Scholar
  8. Klerk, G-J 1990How to measure somaclonal variationActa Bot. Neer.39129144Google Scholar
  9. Doyle, JJ, Doyle, JL 1990Isolation of plant DNA from fresh tissueBRL Focus121315Google Scholar
  10. Eifler, I 1959Beschreibung einer Fixiermethode, die das Auszählen von Birkenchromosomen erleichtertZuechter295759CrossRefGoogle Scholar
  11. Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F & Takagi H (eds) Cryopreservation of Tropical Germplasm: Current Research Progress and Application. IPGRI Rome / JIRCAS Tsukuba, pp. 8–10Google Scholar
  12. Fourré, J-L, Berger, P, Niquet, L, André, P 1997Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approachesTheor. Appl. Genet.94159169CrossRefGoogle Scholar
  13. Giri, CC, Shyamkumar, B, Anjaneyulu, C 2004Progress in tissue culture, genetic transformation and applications of biotechnology to trees: a overviewTrees18115135Google Scholar
  14. Hao, Y-J, Deng, X-X 2002Occurence of chromosomal variations and plant regeneration from long-term-cultured Citrus callusIn Vitro Cell. Dev. Biol.-Plant38472476CrossRefGoogle Scholar
  15. Harding, K 1991Molecular stability of the ribosomal RNA genes in Solanum tuberosum plants recovered from slow growth and cryopreservationEuphytica55141146CrossRefGoogle Scholar
  16. Hargreaves, C, Grase, L, Maas, S, Reeves, C, Holden, G, Menzies, M, Kumar, S, Foggo, M 2004Cryopreservation of Pinus radiata zygotic embryo cotyledons: effect of storage duration on adventitious shoot formation and plant growth after 2 years in the fieldCan. J. For. Res.34600608CrossRefGoogle Scholar
  17. Helliot, B, Madur, D, Dirlewanger, E, de Boucaud, MT 2002Evaluation of genetic stability in cryopreserved PrunusIn Vitro Cell. Dev. Biol.-Plant38493500CrossRefGoogle Scholar
  18. Huhtinen, O, Yahyaoglu, Z 1973Das frühe Blühen von aus Kalluskulturen herangezogenen Pflänzchen bei der Birke (Betula pendula Roth)Silvae Genet.233234Google Scholar
  19. Hömmö, L, Särkilahti, E 1986A method of counting chromosomes of hardwood trees using root tips and young leavesCan. J. For. Res.16401403Google Scholar
  20. Jokipii, S, Ryynänen, L, Kallio, PT, Aronen, T, Häggman, H 2004A cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula L. x Populus tremuloides MichxPlant Sci.166799806CrossRefGoogle Scholar
  21. Lloyd, G, McCown, B 1980Commercially-feasible micropropagation of Mountain Laurel, Kalmia latifolia, by use of shoot-tip cultureInt. Plant Prop. Soc.30421427Google Scholar
  22. Lodhi, MA, Ye, G-N, Weeden, NF, Reisch, BI 1994A simple and efficient method for DNA extraction from grapevine cultivars and Vitis speciesPlant Mol. Biol. Rep.12613Google Scholar
  23. Niino, T, Sakai, A, Yakuwa, H, Nojiri, K 1992Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrificationPlant Cell Tiss. Org. Cult.28261266CrossRefGoogle Scholar
  24. Rani, V, Raina, SN 2000Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisalIn Vitro Cell. Dev. Biol.-Plant36319330Google Scholar
  25. Regina M, Nissinen T, Kurki A & Lapinjoki P (2002) Application of DNA marker techniques on white birch, Betula pendula Roth. In: Welander M & Zhu L-H (eds) Proceedings of the Workshop on High Quality Birch. Clonal Propagation and Wood Propeties (pp. 78–86). Dept. Crop Sci. Swedish Univ. Agricult. Sci. Alnarp, SwedenGoogle Scholar
  26. Ryynänen, L 1996Cold hardening and slow cooling: tools for succesful cryopreservation and recovery of in vitro shoot tips of silver birchCan. J. For. Res.2620152022Google Scholar
  27. Ryynänen, L 1998Effect of abscisic acid, cold hardening, and photoperiod on recovery of cryopreserved in vitro shoot tips of silver birchCryobiology363239CrossRefPubMedGoogle Scholar
  28. Ryynänen, L 1999Effect of early spring birch bud type on post-thaw regrowth after prolonged cryostorageCan. J. For. Res.294752CrossRefGoogle Scholar
  29. Ryynänen, L, Häggman, H 1999Substitution of ammonium ions during cold hardening and post-thaw cultivation enhances recovery of cryopreserved shoot tips of Betula pendula RothJ. Plant Physiol.154735742Google Scholar
  30. Ryynänen, L, Ryynänen, M 1986Propagation of adult curly-birch succeeds with tissue cultureSilva Fenn.20139147Google Scholar
  31. Singh, A, Negi, MS, Moses, VK, Venkateswarlu, B, Srivastava, PS, Lakshmikumaran, M 2002Molecular analysis of micropropagated neem plants using AFLP markers for ascertaining clonal fidelityIn Vitro Cell. Dev. Biol.-Plant38519524CrossRefGoogle Scholar
  32. Tsai, C-J, Hubsher, S 2004Cryopreservation in Populus functional genomicsNew Phytol.1647381Google Scholar
  33. Urbanová, M, Cellárová, E, Kimáková, K 2002Chromosome number stability and mitotic activity of cryopreserved Hypericum perforatum L. meristemsPlant Cell Rep.2010821086CrossRefGoogle Scholar
  34. Valjakka, M, Aronen, T, Kangasjärvi, J, Vapaavuori, E, Häggman, H 2000Genetic transformation of silver birch (Betula pendula) by particle bombardmentTree Physiol.20607613PubMedGoogle Scholar
  35. Viherä-Aarnio, A, Ryynänen, L 1995Growth, crown structure and seed production of birch seedlings, grafts and micropropagated plantsSilva Fenn.29312Google Scholar
  36. Yakuwa, H, Oka, S 1988Plant regeneration on through meristem culture from vegetative buds of mulberry (Morus␣bombycis Koidz.) stored in liquid nitrogenAnn. Bot.627982Google Scholar
  37. Zhai, Z, Wu, Y, Engelmann, F, Chen, R, Zhao, Y 2003Genetic stability assessments of plantlets regenerated from cryopreserved in vitro cultured grape and kiwi shoot-tips using RAPDCryoLetters24315322PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Finnish Forest Research Institute, Punkaharju Research StationFinland

Personalised recommendations