Journal of Thrombosis and Thrombolysis

, Volume 41, Issue 3, pp 374–383 | Cite as

PON1 Q192R genetic variant and response to clopidogrel and prasugrel: pharmacokinetics, pharmacodynamics, and a meta-analysis of clinical outcomes

  • Jessica L. MegaEmail author
  • Sandra L. Close
  • Stephen D. Wiviott
  • Michael Man
  • Suman Duvvuru
  • Joseph R. Walker
  • Scott S. Sundseth
  • Jean-Philippe Collet
  • Jessica T. Delaney
  • Jean-Sebastien Hulot
  • Sabina A. Murphy
  • Guillaume Paré
  • Matthew J. Price
  • Dirk Sibbing
  • Tabassome Simon
  • Dietmar Trenk
  • Elliott M. Antman
  • Marc S. SabatineEmail author


Clopidogrel and prasugrel are antiplatelet therapies commonly used to treat patients with cardiovascular disease. They are both pro-drugs requiring biotransformation into active metabolites. It has been proposed that a genetic variant Q192R (rs662 A>G) in PON1 significantly alters the biotransformation of clopidogrel and affects clinical outcomes; however, this assertion has limited support. The relationship between this variant and clinical outcomes with prasugrel has not been studied. We genotyped PON1 Q192R in 275 healthy subjects treated with clopidogrel or prasugrel and 2922 patients with an ACS undergoing PCI randomized to treatment with clopidogrel or prasugrel in the TRITON-TIMI 38 trial. A meta-analysis was performed including 13 studies and 16,760 clopidogrel-treated patients. Among clopidogrel-treated subjects, there were no associations between Q192R and active drug metabolite levels (P = 0.62) or change in platelet aggregation (P = 0.51). Consistent with these results, in clopidogrel-treated patients in TRITON-TIMI 38, there was no association between Q192R and the rates of CV death, myocardial infarction, or stroke (RR 11.2 %, QR 8.6 %, and QQ 9.3 %; P = 0.66) or stent thrombosis (RR 2.4 %, QR 0.7 %, and QQ 1.6 %, P = 0.30), with patients with the putative at-risk Q variant having numerically lower event rates. Likewise, among prasugrel-treated subjects, there were no associations between Q192R and active drug metabolite levels (P = 0.88), change in platelet aggregation (P = 0.97), or clinical outcomes (P = 0.72). In a meta-analysis, the Q variant was not significantly associated with MACE (QQ vs. RR 1.22, 95 % CI 0.84–1.76) or stent thrombosis (QQ vs. RR OR 1.36, 95 % CI 0.77–2.38). Furthermore, when restricted to the validation studies, the OR (95 % CI) for MACE and stent thrombosis were 0.99 (0.77–1.27) and 1.23 (0.74–2.03), respectively. In the present study, the Q192R genetic variant in PON1 was not associated with the pharmacologic or clinical response to clopidogrel, nor was it associated with the response to prasugrel. The meta-analysis reinforced a lack of a significant association between Q192R and cardiovascular outcomes in clopidogrel-treated patients.


Clopidogrel Prasugrel Genetics PON1 



Supported by research grants from Daiichi Sankyo and Eli Lilly.

Compliance with ethical standards

Conflict of interest

Drs. Close, Delaney, Sibbing do not have conflicts to disclose.


Dr. Mega: employee of Google Life Sciences; grant support from AstraZeneca, Bayer Healthcare, Bristol-Myers Squibb, Daiichi/Eli Lilly, Johnson & Johnson, Sanofi-Aventis, Nanosphere, Accumetrics; consulting fees from AstraZeneca, Bayer, Boehringer Ingelheim, Janssen, Portola. Dr. Wiviott: grant support from Daiichi Sankyo, Eli Lilly, Sanofi-Aventis; consulting fees from Astra-Zeneca and Sanofi-Aventis; lecture fees from Daiichi-Sankyo, Eli Lilly, and AstraZeneca. Drs. Man and Duvvuru: employees of Eli Lilly with an equity interest or stock options in the company. Dr. Walker: employee of Daiichi Sankyo with an equity interest or stock options in the company during the study and now an employee of Celgene. Dr. Sundeth: consulting fees from Eli Lilly. Dr. Collet: grant support from Bristol-Myers Squibb, Sanofi-Aventis, Eli Lilly, Medtronic, Boston Scientific, Cordis, Stago, Fondation de France, INSERM, Nanospheres, Fédération Française de Cardiologie and SociétéFrançaise de Cardiologie; consulting fees from Sanofi-Aventis, Eli Lilly, and Bristol-Myers Squibb; lecture fees from Bristol-Myers Squibb, Sanofi-Aventis, Eli Lilly, and AstraZeneca. Dr. Hulot: grant support from Biotronik, Medco Research Institute; honoraria from Biotronik, Medco Health Solutions. Ms. Murphy: consulting fees from Amarin Pharmaceuticals. Dr. Paré: consulting fees from Sanofi-Aventis, Bristol-Myers Squibb. Dr. Price: consulting fees from AstraZeneca, Daiichi Sankyo/Eli Lilly, Accumetrics, The Medicines Company, Merck, Medicure, Janssen Pharmaceuticals, Boston Scientific; speakers honoraria from AstraZeneca and Daiichi Sankyo/Eli Lilly; equity interest (modest) from Iverson Genetics. Dr. Simon: grant support Astra-Zeneca, Daiichi-Sankyo, Eli Lilly, Glaxo-Smith-Kline, MSD, Novartis, Pfizer, Sanofi-aventis, Servier; speaker, advisory Board and consulting fees from AstraZeneca, Bayer-Schering, Eli-Lilly, Sanofi-Aventis. Dr. Trenk: consulting fees from Boehringer Ingelheim, Daiichi Sankyo, Eli Lilly; lecture fees from AstraZeneca, Bayer Vital, Daiichi Sankyo, Eli Lilly, MSD; grant support Eli Lilly. Dr. Antman: grant support from Daiichi Sankyo, Eli Lilly, consulting fees from Sanofi-Aventis; lecture fees from Eli Lilly, Sanofi-Aventis. Dr. Sabatine: research grant support through Brigham and Women’s Hospital from Abbott Laboratories, Amgen, AstraZeneca, Bristol-Myers Squibb, Critical Diagnostics, Daiichi-Sankyo, Eisai, Genzyme, GlaxoSmithKline, Intarcia, Merck, Roche Diagnostics, Sanofi-aventis, Takeda; consulting fees from Amgen, AstraZeneca, Bristol-Myers Squibb, Cubist, CVS Caremark, Merck, MyoKardia, Quest Diagnostics, Zeus Scientific. JLM and MSS had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Supplementary material

11239_2015_1264_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 26 kb)


  1. 1.
    Sabatine MS, Cannon CP, Gibson CM, Lopez-Sendon JL, Montalescot G, Theroux P, Claeys MJ, Cools F, Hill KA, Skene AM, McCabe CH, Braunwald E (2005) Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N Engl J Med 352:1179–1189CrossRefPubMedGoogle Scholar
  2. 2.
    The Clopidogrel in Unstable Angina to Prevent Recurrent Ischemic Events Trial Investigators (2001) Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 345:494–502CrossRefGoogle Scholar
  3. 3.
    Gurbel PA, Bliden KP, Hiatt BL, O’Connor CM (2003) Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 107:2908–2913CrossRefPubMedGoogle Scholar
  4. 4.
    Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM, Macias W, Braunwald E, Sabatine MS (2009) Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 360:354–362. doi: 10.1056/NEJMoa0809171 CrossRefPubMedGoogle Scholar
  5. 5.
    Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N, Steg PG, Ferrieres J, Danchin N, Becquemont L (2009) Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med 360:363–375. doi: 10.1056/NEJMoa0808227 CrossRefPubMedGoogle Scholar
  6. 6.
    Collet JP, Hulot JS, Pena A, Villard E, Esteve JB, Silvain J, Payot L, Brugier D, Cayla G, Beygui F, Bensimon G, Funck-Brentano C, Montalescot G (2009) Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 373:309–317. doi: 10.1016/S0140-6736(08)61845-0 CrossRefPubMedGoogle Scholar
  7. 7.
    Mega JL, Simon T, Collet JP, Anderson JL, Antman EM, Bliden K, Cannon CP, Danchin N, Giusti B, Gurbel P, Horne BD, Hulot JS, Kastrati A, Montalescot G, Neumann FJ, Shen L, Sibbing D, Steg PG, Trenk D, Wiviott SD, Sabatine MS (2010) Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 304:1821–1830. doi: 10.1001/jama.2010.1543 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, Damcott CM, Pakyz R, Tantry US, Gibson Q, Pollin TI, Post W, Parsa A, Mitchell BD, Faraday N, Herzog W, Gurbel PA (2009) Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302:849–857. doi: 10.1001/jama.2009.1232 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bouman HJ, Schomig E, van Werkum JW, Velder J, Hackeng CM, Hirschhauser C, Waldmann C, Schmalz HG, ten Berg JM, Taubert D (2011) Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med 17:110–116. doi: 10.1038/nm.2281 CrossRefPubMedGoogle Scholar
  10. 10.
    Payne CD, Li YG, Small DS, Ernest CS 2nd, Farid NA, Jakubowski JA, Brandt JT, Salazar DE, Winters KJ (2007) Increased active metabolite formation explains the greater platelet inhibition with prasugrel compared to high-dose clopidogrel. J Cardiovasc Pharmacol 50:555–562CrossRefPubMedGoogle Scholar
  11. 11.
    Small DS, Payne CD, Kothare PA, Yuen ES, Natanegara F, Loh MT, Jakubowski JA, Winters KJ, Farid NA, Ni L, Li YG, Salazar DE, Kelly RP (2008) Comparison of pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel loading doses in healthy Chinese and Caucasian subjects. Clin Pharmacol Ther 83(Suppl 1):S56Google Scholar
  12. 12.
    Payne CD, Li YG, Brandt JT, Jakubowski JA, Small DS, Farid NA, Salazar DE, Winters KJ (2008) Switching directly to prasugrel from clopidogrel results in greater inhibition of platelet aggregation in aspirin-treated subjects. Platelets 19:275–281CrossRefPubMedGoogle Scholar
  13. 13.
    Small DS, Farid NA, Li YG, Ernest CS II, Payne CD, Salazar DE, Winters KJ (2008) Effect of ranitidine on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. Curr Med Res Opin 24:2251–2257CrossRefPubMedGoogle Scholar
  14. 14.
    Farid NA, Small DS, Payne CD, Jakubowski JA, Brandt JT, Li YG, Ernest CS, Salazar DE, Konkoy CS, Winters KJ (2008) Effect of atorvastatin on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel in healthy subjects. Pharmacotherapy 28:1483–1494. doi: 10.1592/phco.28.12.1483 CrossRefPubMedGoogle Scholar
  15. 15.
    H7T-FWTAAQ. Data on file, Eli Lilly, Data on fileGoogle Scholar
  16. 16.
    Farid NA, McIntosh M, Garofolo F, Wong E, Shwajch A, Kennedy M, Young M, Sarkar P, Kawabata K, Takahashi M, Pang H (2007) Determination of the active and inactive metabolites of prasugrel in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21:169–179CrossRefPubMedGoogle Scholar
  17. 17.
    Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, Neumann FJ, Ardissino D, De Servi S, Murphy SA, Riesmeyer J, Weerakkody G, Gibson CM, Antman EM (2007) Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 357:2001–2015CrossRefPubMedGoogle Scholar
  18. 18.
    Wiviott SD, Braunwald E, McCabe CH, Horvath I, Keltai M, Herrman JP, Van de Werf F, Downey WE, Scirica BM, Murphy SA, Antman EM (2008) Intensive oral antiplatelet therapy for reduction of ischaemic events including stent thrombosis in patients with acute coronary syndromes treated with percutaneous coronary intervention and stenting in the TRITON-TIMI 38 trial: a subanalysis of a randomised trial. Lancet 371:1353–1363CrossRefPubMedGoogle Scholar
  19. 19.
    Wiviott SD, Antman EM, Gibson CM, Montalescot G, Riesmeyer J, Weerakkody G, Winters KJ, Warmke JW, McCabe CH, Braunwald E (2006) Evaluation of prasugrel compared with clopidogrel in patients with acute coronary syndromes: design and rationale for the TRial to assess Improvement in Therapeutic Outcomes by optimizing platelet InhibitioN with prasugrel Thrombolysis In Myocardial Infarction 38 (TRITON-TIMI 38). Am Heart J 152:627–635CrossRefPubMedGoogle Scholar
  20. 20.
    Sibbing D, Koch W, Massberg S, Byrne RA, Mehilli J, Schulz S, Mayer K, Bernlochner I, Schomig A, Kastrati A (2011) No association of paraoxonase-1 Q192R genotypes with platelet response to clopidogrel and risk of stent thrombosis after coronary stenting. Eur Heart J 32:1605–1613. doi: 10.1093/eurheartj/ehr155 CrossRefPubMedGoogle Scholar
  21. 21.
    Trenk D, Hochholzer W, Fromm MF, Zolk O, Valina CM, Stratz C, Neumann FJ (2011) Paraoxonase-1 Q192R polymorphism and antiplatelet effects of clopidogrel in patients undergoing elective coronary stent placement. Circ Cardiovasc Genet 4:429–436. doi: 10.1161/CIRCGENETICS.111.960112 CrossRefPubMedGoogle Scholar
  22. 22.
    Cayla G, Hulot JS, O’Connor SA, Pathak A, Scott SA, Gruel Y, Silvain J, Vignalou JB, Huerre Y, de la Briolle A, Allanic F, Beygui F, Barthelemy O, Montalescot G, Collet JP (2011) Clinical, angiographic, and genetic factors associated with early coronary stent thrombosis. JAMA 306:1765–1774. doi: 10.1001/jama.2011.1529 CrossRefPubMedGoogle Scholar
  23. 23.
    Campo G, Ferraresi P, Marchesini J, Bernardi F, Valgimigli M (2011) Relationship between paraoxonase Q192R gene polymorphism and on-clopidogrel platelet reactivity over time in patients treated with percutaneous coronary intervention. J Thromb Haemost 9:2106–2108. doi: 10.1111/j.1538-7836.2011.04457.x CrossRefPubMedGoogle Scholar
  24. 24.
    Hulot JS, Collet JP, Cayla G, Silvain J, Allanic F, Bellemain-Appaix A, Scott SA, Montalescot G (2011) CYP2C19 but not PON1 genetic variants influence clopidogrel pharmacokinetics, pharmacodynamics, and clinical efficacy in post-myocardial infarction patients. Circ Cardiovasc Interv 4:422–428. doi: 10.1161/CIRCINTERVENTIONS.111.963025 CrossRefPubMedGoogle Scholar
  25. 25.
    Simon T, Steg PG, Becquemont L, Verstuyft C, Kotti S, Schiele F, Ferrari E, Drouet E, Grollier G, Danchin N (2011) Effect of paraoxonase-1 polymorphism on clinical outcomes in patients treated with clopidogrel after an acute myocardial infarction. Clin Pharmacol Ther 90:561–567. doi: 10.1038/clpt.2011.193 CrossRefPubMedGoogle Scholar
  26. 26.
    Delaney JT, Ramirez AH, Bowton E, Pulley JM, Basford MA, Schildcrout JS, Shi Y, Zink R, Oetjens M, Xu H, Cleator JH, Jahangir E, Ritchie MD, Masys DR, Roden DM, Crawford DC, Denny JC (2012) Predicting clopidogrel response using DNA samples linked to an electronic health record. Clin Pharmacol Ther 91:257–263. doi: 10.1038/clpt.2011.221 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pare G, Ross S, Mehta SR, Yusuf S, Anand SS, Connolly SJ, Fox KA, Eikelboom JW (2012) Effect of PON1 Q192R genetic polymorphism on clopidogrel efficacy and cardiovascular events in the clopidogrel in the unstable angina to prevent recurrent events trial and the atrial fibrillation clopidogrel trial with irbesartan for prevention of vascular events. Circ Cardiovasc Genet 5:250–256. doi: 10.1161/CIRCGENETICS.111.961417 CrossRefPubMedGoogle Scholar
  28. 28.
    Price MJ, Murray SS, Angiolillo DJ, Lillie E, Smith EN, Tisch RL, Schork NJ, Teirstein PS, Topol EJ (2012) Influence of genetic polymorphisms on the effect of high- and standard-dose clopidogrel after percutaneous coronary intervention: the GIFT (Genotype Information and Functional Testing) study. J Am Coll Cardiol 59:1928–1937. doi: 10.1016/j.jacc.2011.11.068 CrossRefPubMedGoogle Scholar
  29. 29.
    Chen DY, Wang CY, Wen MS, Lee TH, Chu Y, Hsieh MJ, Chang SH, Lee CH, Wang JL, Chen CC, Lu LS, Lee MT, Yeh SJ, Lin FC, Hsieh IC (2012) Paraoxonase-1 is not a major determinant of stent thrombosis in a Taiwanese population. PLoS One 7:e39178. doi: 10.1371/journal.pone.0039178 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cuisset T, Morange PE, Quilici J, Bonnet JL, Gachet C, Alessi MC (2011) Paraoxonase-1 and clopidogrel efficacy. Nat Med 17:1039; author reply 42–4. doi: 10.1038/nm.2367
  31. 31.
    Dansette PM, Rosi J, Bertho G, Mansuy D (2011) Paraoxonase-1 and clopidogrel efficacy. Nat Med 17: 1040–1041; author reply 2–4. doi: 10.1038/nm.2436
  32. 32.
    Gong IY, Crown N, Suen CM, Schwarz UI, Dresser GK, Knauer MJ, Sugiyama D, Degorter MK, Woolsey S, Tirona RG, Kim RB (2012) Clarifying the importance of CYP2C19 and PON1 in the mechanism of clopidogrel bioactivation and in vivo antiplatelet response. Eur Heart J 33:2856–2864. doi: 10.1093/eurheartj/ehs042 CrossRefPubMedGoogle Scholar
  33. 33.
    Regieli JJ, Jukema JW, Doevendans PA, Zwinderman AH, Kastelein JJ, Grobbee DE, van der Graaf Y (2009) Paraoxonase variants relate to 10-year risk in coronary artery disease: impact of a high-density lipoprotein-bound antioxidant in secondary prevention. J Am Coll Cardiol 54:1238–1245. doi: 10.1016/j.jacc.2009.05.061 CrossRefPubMedGoogle Scholar
  34. 34.
    Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang R, Yang X, Schmitt D, Fu X, Shao M, Brennan DM, Ellis SG, Brennan ML, Allayee H, Lusis AJ, Hazen SL (2008) Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA 299:1265–1276. doi: 10.1001/jama.299.11.1265 CrossRefPubMedGoogle Scholar
  35. 35.
    Lawlor DA, Day IN, Gaunt TR, Hinks LJ, Briggs PJ, Kiessling M, Timpson N, Smith GD, Ebrahim S (2004) The association of the PON1 Q192R polymorphism with coronary heart disease: findings from the British Women’s Heart and Health cohort study and a meta-analysis. BMC Genet 5:17. doi: 10.1186/1471-2156-5-17 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jessica L. Mega
    • 1
    Email author
  • Sandra L. Close
    • 2
  • Stephen D. Wiviott
    • 1
  • Michael Man
    • 3
  • Suman Duvvuru
    • 3
  • Joseph R. Walker
    • 4
  • Scott S. Sundseth
    • 5
  • Jean-Philippe Collet
    • 6
  • Jessica T. Delaney
    • 7
  • Jean-Sebastien Hulot
    • 8
    • 9
  • Sabina A. Murphy
    • 1
  • Guillaume Paré
    • 10
  • Matthew J. Price
    • 11
  • Dirk Sibbing
    • 12
  • Tabassome Simon
    • 13
  • Dietmar Trenk
    • 14
  • Elliott M. Antman
    • 1
  • Marc S. Sabatine
    • 1
    Email author
  1. 1.Thrombolysis in Myocardial Infarction Study Group, Cardiovascular Division, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisUSA
  3. 3.Eli Lilly and CompanyIndianapolisUSA
  4. 4.Celgene CorporationSummitUSA
  5. 5.Cabernet PharmaceuticalsDurhamUSA
  6. 6.Institut de Cardiologie, INSERM U 937, Groupe Hospitalier Pitié-SalpêtrièreParisFrance
  7. 7.Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleUSA
  8. 8.Cardiovascular Research CenterMount Sinai School of MedicineNew YorkUSA
  9. 9.Pharmacology Department, INSERM UMR S 956, Université Pierre et Marie Curie-Paris 6Pitié-Salpêtrière University HospitalParisFrance
  10. 10.Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac Vascular and Stroke Research InstituteMcMaster UniversityHamiltonCanada
  11. 11.Scripps Clinic and Scripps Translational Science InstituteLa JollaUSA
  12. 12.I. Medizinische Klinik und PoliklinikLudwig-Maximilians-UniversitätMunichGermany
  13. 13.Department of Clinical Pharmacology, AP-HP, Hôpital Saint AntoineINSERM U-698ParisFrance
  14. 14.Klinik für Kardiologie und Angiologie IIUniversitaets-Herzzentrum Freiburg-Bad KrozingenBad KrozingenGermany

Personalised recommendations