Advertisement

Journal of Thrombosis and Thrombolysis

, Volume 40, Issue 2, pp 218–224 | Cite as

Analysis of CYP2C9 polymorphisms (*2 and *3) in warfarin therapy patients in Pakistan. Association of CYP2C9 polymorphisms (*2 and*3) with warfarin dose, age, PT and INR

  • Faiza YasmeenEmail author
  • Muhammad Bilal Ghafoor
  • Abdul Wadood Khalid
  • Waqas Latif
  • Shahida Mohsin
  • Shagufta Khaliq
Article

Abstract

Warfarin is a widely used anticoagulant characterized by having a narrow therapeutic index and exhibiting a wide range of inter-individual and inter-ethnic variation. Single nucleotide polymorphisms in hepatic VKORC1 and CYP2C9 genes causes decreased and increased metabolism of warfarin respectively. The objective of this study was to evaluate the allele frequency of CYP2C9 polymorphic variants *2 and *3 and the association of these allelic variants with PT/INR and daily/weekly dose of warfarin. Seventy-four patients with heart valve replacement were selected. Patients taking low warfarin dose (4.90–17.50 mg weekly) for at least last 3 months and had a stable INR in the range of 2–3 were included in this study. CYP2C9 polymorphism was analyzed by polymerase chain reaction followed by restriction fragment length polymorphism (PCR–RFLP) technique. Among 74 patients, 9 (12.1 %) showed to have *2 allele, whereas 11 (14.1 %) had *3 allele. Genotype frequencies of wild and variant alleles were, 54.1, 17.6, 21.6 and 6.8 % for *1/*1, *1/*2, *1/*3 and *2/*3 respectively. None of the patient was homozygous for *2 and *3. Statistical analysis showed that low warfarin dose (weekly) is significantly associated with *1/*2 and *1/*3 genotypes (p value ≥ 0.001), whereas PT/INR showed no significant association with the any genotypes of CYP2C9. Our study suggest that polymorphic variants of CYP2C9 (*2 and *3) might influence warfarin dose requirements and associated with the low dose of warfarin in patients.

Keywords

Warfarin Polymorphism CYP2C9 Prosthetic valve thrombosis (PVT) 

Notes

Acknowledgments

Author is thankful to all department fellows for giving kind support and help. We are also thankful to Dr. Shah Jahan, Dr. Saba and Shabbir Hussain for their support.

References

  1. 1.
    Daniels CJ, Barbetseas J, Boudoulas H (2009) Prosthetic valves. In: American College of Cardiology (ed) Adult clinical cardiology self-assessment program, version 7, vol 4. American College of Cardiology, Washington, DC, pp 9.1–9.25Google Scholar
  2. 2.
    Vahanian A, Baumgartner H, Bax J et al (2007) Guidelines on the management of valvular heart disease: the task force on the management of valvular heart disease of the European Society of Cardiology. Eur Heart J 28:230–268PubMedGoogle Scholar
  3. 3.
    Laplace G, Lafitte S, Labeque JN et al (2004) Clinical significance of early thrombosis after prosthetic mitral valve replacement. J Am Coll Cardiol 43:1283–1290PubMedCrossRefGoogle Scholar
  4. 4.
    Pirmohamed M (2006) Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol 62:509–511PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Antonella T, Anne G (2004) Warfarin from rat poison to oral anticoagulant. Chronic ill 8:16–19Google Scholar
  6. 6.
    Nutescu EA, Shapiro NL, Chevalier A et al (2005) A pharmacologic overview of current and emerging anticoagulants. Clevel Clin J Med 72:S2–S6CrossRefGoogle Scholar
  7. 7.
    Hirsh J, Fuster V, Ansell J, Halperin LJ (2003) American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. Circulation 107:1692–1711PubMedCrossRefGoogle Scholar
  8. 8.
    Rieder MJ et al (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352:2285–2293PubMedCrossRefGoogle Scholar
  9. 9.
    Conce EA et al (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333CrossRefGoogle Scholar
  10. 10.
    Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in vitro and human data. Pharmacogenetics 12:251–263PubMedCrossRefGoogle Scholar
  11. 11.
    Takahashi H, Echizen H (2001) Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 40:587–603PubMedCrossRefGoogle Scholar
  12. 12.
    Urquhart BL, Tirona RG, Kim RB (2007) Nuclear receptors and the regulation of drug metabolizing enzymes and drug transporters implications for inter-individual variability in response to drugs. J Clin Pharmacol 47:566–578PubMedCrossRefGoogle Scholar
  13. 13.
    Sim SC, Ingelman-Sundberg M (2006) The human cytochrome P450 allele nomenclature committee web site: submission criteria, procedures, and objectives. In: Phillips IR, Shephard EA (eds) Cytochrome P450 protocols. Methods in molecular biology, vol 320. Humana Press, pp 183–191CrossRefGoogle Scholar
  14. 14.
    Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR (1994) Impaired S-warfarin metabolism catalyzed by R144C allelic variant of CYP2C9. Pharmacogenetics 4:39–42PubMedCrossRefGoogle Scholar
  15. 15.
    Xie HG, Prasad S, Kim HC, Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 54(10):1257–1270PubMedCrossRefGoogle Scholar
  16. 16.
    Kirchheiner J, Störmer E, Meisel C, Steinbach N, Roots I, Brockmöller J (2003) Influence of CYP2C9 genetic polymorphisms on pharmacokinetics of celecoxib and its metabolites. Pharmacogenetics 13(8):473–480PubMedCrossRefGoogle Scholar
  17. 17.
    Caldwell MD, Berg RL, Zhang KQ, Glurich I, Schmelzer JR, Yale SH, Vidaillet HJ, Burmester JK (2007) Evaluation of genetic factors for warfarin dose prediction. Clin Med Res 5:8–16PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Millican EA, Lenzini PA, Milligan PE, Grosso L, Eby C, Deych E et al (2007) Genetic based dosing in orthopedic patients beginning warfarin therapy. Blood 110:1511–1515PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    García-Martín E, Martínez C, Ladero JM, Gamito FJ, Agúndez JA (2001) High frequency of mutations related to impaired CYP2C9 metabolism in a Caucasian population. Eur J Clin Pharmacol 57:47–49PubMedCrossRefGoogle Scholar
  20. 20.
    Gaikovitch EA, Cascorbi I, Mrozikiewicz PM et al (2003) Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 59:303–312PubMedCrossRefGoogle Scholar
  21. 21.
    Yasar U, Aklillu E, Canaparo R et al (2002) Analysis of CYP2C9*5 in Caucasian, oriental and Black-African populations. Eur J Clin Pharmacol 58:555–558PubMedCrossRefGoogle Scholar
  22. 22.
    Aynacioglu AS, Brockmöller J, Bauer S et al (1999) Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 48:409–415PubMedCrossRefGoogle Scholar
  23. 23.
    Imai J, Ieiri I, Mamiya K et al (2000) Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetics analysis of the CYP2C9 locus. Pharmacogenetics 10:85–89PubMedCrossRefGoogle Scholar
  24. 24.
    Yoon YR, Shon JH, Kim MK et al (2001) Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. Br J Clin Pharmacol 51:277–280PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Adithan C, Gerard N, Vasu S et al (2003) Allele and genotype frequency of CYP2C9 in Tamilnadu population. Eur J Clin Pharmacol 59:707–709PubMedCrossRefGoogle Scholar
  26. 26.
    Zand N, Tajik N, Moghaddam AS, Milanian I (2007) Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Iranian population. Clin Exp Pharm Physiol 34:102–105CrossRefGoogle Scholar
  27. 27.
    Sambrook J, Rusell D (2001) Molecular cloning: a laboratory manual, vol 3, 3rd ednGoogle Scholar
  28. 28.
    Lindh JD, Holm ML, Rane A (2009) Influence of CYP2C9 genotype on warfarin dose requirements—a systematic review and meta-analysis. Eur J Clin Pharmacol 65(4):365–375PubMedCrossRefGoogle Scholar
  29. 29.
    Oner OG, Langaee TY, Feng H, Buyru N, Ulutin T, Hatemi AC et al (2008) VKORC1 and CYP2C9 polymorphisms are associated with warfarin dose requirements in Turkish patients. EurJ Clin Pharmacol 64(9):889–894CrossRefGoogle Scholar
  30. 30.
    Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–2333PubMedCrossRefGoogle Scholar
  31. 31.
    Kimmel S, French B, Kasner S et al (2013) A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 369(24):2283–2293PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Bazan NS, Mokhtar S, Sabry NA, Badary OA, Rizk A (2014) Factors affecting warfarin dose requirements and quality of anticoagulation in adult Egyptian patients: role of gene polymorphism. Iran J Med Sci 183:161–172CrossRefGoogle Scholar
  33. 33.
    Jose R et al (2005) CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol 19(1):101–105PubMedCrossRefGoogle Scholar
  34. 34.
    Wang SL, Huang JD, Lai MD, Tsai JJ (1995) Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics 5(1):37–42PubMedCrossRefGoogle Scholar
  35. 35.
    Santos PC et al (2013) CYP2C9 and VKORC1 polymorphisms influence warfarin dose variability in patients on long-term anticoagulation. Eur J Clin Pharmacol 69(4):789–797PubMedCrossRefGoogle Scholar
  36. 36.
    Chern HD et al (2006) CYP2C9 polymorphism and warfarin sensitivity in Taiwan Chinese. Clin Chim Acta 367(1–2):108–113PubMedCrossRefGoogle Scholar
  37. 37.
    You JH, Tsui KK, Wong RS, Cheng G (2012) Cost-effectiveness of dabigatran versus genotype-guided management of warfarin therapy for stroke prevention in patients with atrial fibrillation. PLos One 7(6):e39640Google Scholar
  38. 38.
    Taube J, Halsall D, Baglin T (2000) Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 96(5):1816–1819PubMedGoogle Scholar
  39. 39.
    Crespi CL, Miller VP (1997) The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH: cytochrome P450 oxidoreductase. Pharmacogenetics 7:203–210PubMedCrossRefGoogle Scholar
  40. 40.
    Aithal GP, Day CP, Kesteven P, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Faiza Yasmeen
    • 1
    Email author
  • Muhammad Bilal Ghafoor
    • 1
  • Abdul Wadood Khalid
    • 2
  • Waqas Latif
    • 3
  • Shahida Mohsin
    • 1
  • Shagufta Khaliq
    • 4
  1. 1.Department of HaematologyUniversity of Health Sciences (UHS)LahorePakistan
  2. 2.Punjab Institute of Cardiology (PIC)LahorePakistan
  3. 3.Department of BiostatisticsUniversity of Health SciencesLahorePakistan
  4. 4.Department of Human Genetics and Molecular BiologyUniversity of Health SciencesLahorePakistan

Personalised recommendations