Journal of Thrombosis and Thrombolysis

, Volume 40, Issue 4, pp 458–467 | Cite as

Platelet leukocyte aggregates and markers of platelet aggregation, immune activation and disease progression in HIV infected treatment naive asymptomatic individuals

  • Bongani B. Nkambule
  • Glenda Davison
  • Hayley Ipp


Platelet aggregates play a crucial role in the immune defence mechanism against viruses. Increased levels of lipopolysaccharide have been reported in human immunodeficiency virus (HIV) infected individuals. Platelets are capable of interacting with bacterial LPS and subsequently forming platelet leukocyte aggregates (PLAs). This study aimed at determining the levels of circulating PLAs in treatment naïve HIV infected individuals and correlating them, with markers of immune activation, disease progression and platelet aggregation. Thirty-two HIV negative and 35 HIV positive individuals were recruited from a clinic in the Western Cape. Platelet monocyte and platelet neutrophil aggregates were measured using flow cytometry at baseline and were correlated with markers of platelet activation (CD62P); aggregation (CD36); monocyte and neutrophil activation (CD69); monocyte tissue factor expression (CD142); immune activation (CD38 on T+ cells); D-dimers (a marker of active coagulation); CD4 count and viral load. Platelet monocyte aggregates were also measured post stimulation with lipopolysaccharide. PMA levels were higher in HIV 25.26 (16.16–32.28) versus control 14.12 (8.36–18.83), p = 0.0001. PMAs correlated with %CD38/8 expression (r = 0.54624, p = 0.0155); CD4 count (r = −0.6964, p = 0.0039) viral load (r = 0.633, p < 0.009) and monocyte %CD69 expression (r = 0.757, p = 0.030). In addition the %PMAs correlated with platelet %CD36 (r = 0.606, p = 0.017). The HIV group showed increased levels of %CD62P 5.44 (2.72–11.87) versus control 1.15 (0.19–3.59), p < 0.0001; %CD36 22.53 (10.59–55.15) versus 11.01 (3.69–26.98), p = 0.0312 and tissue factor (CD142) MFI 4.84 (4.01–8.17) versus 1.74 (1.07–9.3), p = 0.0240. We describe increased levels of circulating PMAs which directly correlates with markers of immune activation, disease progression and platelet aggregation in HIV treatment naïve individuals.


Platelet function Platelet activation HIV Platelet leukocyte aggregates Immune activation 


  1. 1.
    Ross AC, Rizk N, O’Riordan MA, Dogra V, EL-Bejjani D, Storer N, Harrill D, Tungsiripat M, Adell J, Mccomsey GA (2009) Relationship between inflammatory markers, endothelial activation markers, and carotid intima-media thickness in HIV-infected patients receiving antiretroviral therapy. Clin Infect Dis 49(7):1119–1127PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Cerletti C, De Gaetano G, Lorenzet R (2010) Platelet - leukocyte interactions: multiple links between inflammation, blood coagulation and vascular risk. Mediterr J Hematol Infect Dis 2(3):e2010023PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Funderburg NT, Jiang Y, Debanne SM, Storer N, Labbato D, Clagett B, Robinson J, Lederman MM, Mccomsey GA (2014) Rosuvastatin treatment reduces markers of monocyte activation in HIV-infected subjects on antiretroviral therapy. Clin Infect Dis 58(4):588–595PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    O’Brien M, Montenont E, Hu L, Nardi MA, Valdes V, Merolla M, Gettenberg G, Cavanagh K, Aberg JA, Bhardwaj N, Berger JS (2013) Aspirin attenuates platelet activation and immune activation in HIV-1-infected subjects on antiretroviral therapy: a pilot study. J Acquir Immune Defic Syndr (1999) 63(3):280–288CrossRefGoogle Scholar
  5. 5.
    Beck Z, Jagodzinski LL, Eller MA, Thelian D, Matyas GR, Kunz AN, Alving CR (2013) Platelets and erythrocyte-bound platelets bind infectious HIV-1 in plasma of chronically infected patients. PLoS ONE 8(11):e81002PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    David R (2013) Host response: PF4—platelets’ poison. Nat Rev Microbiol 11(2):72–73CrossRefPubMedGoogle Scholar
  7. 7.
    Speth C, Löffler J, Krappmann S, Lass-Flörl C, Rambach G (2013) Platelets as immune cells in infectious diseases. Future Microbial 8(11):1431–1451CrossRefGoogle Scholar
  8. 8.
    Metcalf Pate KA, Lyons CE, Dorsey JL, Shirk EN, Queen SE, Adams RJ, Gama L, Morrell CN, Mankowski JL (2013) Platelet activation and platelet-monocyte aggregate formation contribute to decreased platelet count during acute simian immunodeficiency virus infection in pig-tailed macaques. J Infect Dis 208(6):874–883PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Clark SR, Ma AC, Tavener SA, Mcdonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, Mcavoy E, Sinclair GD (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469CrossRefPubMedGoogle Scholar
  10. 10.
    Arazna M, Pruchniak MP, Zycinska K and Demkow U (2013) Neutrophil extracellular trap in human diseases. Respiratory Regulation-The Molecular Approach 1–8Google Scholar
  11. 11.
    De Gaetano G (2007) Determinants of platelet conjugate formation with polymorphonuclear leukocytes or monocytes in whole blood. Thromb Haemost 98:1276–1284PubMedGoogle Scholar
  12. 12.
    Bournazos S, Rennie J, Hart SP, Fox KA, Dransfield I (2008) Monocyte functional responsiveness after PSGL-1-mediated platelet adhesion is dependent on platelet activation status. Arterioscler Thromb Vasc Biol 28(8):1491–1498CrossRefPubMedGoogle Scholar
  13. 13.
    Shi G, Morrell CN (2011) Platelets as initiators and mediators of inflammation at the vessel wall. Thromb Res 127(5):387–390PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Reig G, Yeaman M, Lial A (2007) Platelet count is associated with plasma HIV type1 RNA and disease progression. AIDS res Hum Retroviral 23:1257–1261CrossRefGoogle Scholar
  15. 15.
    Sarma J, Laan KA, Alam S et al (2002) Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation 105:2166–2171CrossRefPubMedGoogle Scholar
  16. 16.
    Singh MV, Davidson DC, Kiebala M, Maggirwar SB (2012) Detection of circulating platelet–monocyte complexes in persons infected with human immunodeficiency virus type-1. J Virol Methods 181(2):170–176PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Michelson AD, Barnard MR, Krueger LA, Robert Valeri C, Furman MI (2001) Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 104(13):1533–1537CrossRefPubMedGoogle Scholar
  18. 18.
    Harding SA, Fau DJ, Sarma JF, Jessop AF, Weatherall M, Fox KAA, Newby DE (2007) Flow cytometric analysis of circulating platelet-monocyte aggregates in whole blood: methodological considerations. Thromb Haemost-Stuttgart 98(2):451Google Scholar
  19. 19.
    Tapp L, Shantsila E, Wrigley B, Montoro-Garcia S, LIP G (2013) TLR4 expression on monocyte subsets in myocardial infarction. J Intern Med 273(3):294–305CrossRefPubMedGoogle Scholar
  20. 20.
    Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182CrossRefPubMedGoogle Scholar
  21. 21.
    Cassol E, Malfeld S, Mahasha P, Van der merwe S, CASSOL S, Seebregts C, Alfano M, Poli G, Rossouw T (2010) Persistent microbial translocation and immune activation in HIV-1-infected South Africans receiving combination antiretroviral therapy. J Infect Dis 202(5):723–733CrossRefPubMedGoogle Scholar
  22. 22.
    Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12(12):1365–1371CrossRefPubMedGoogle Scholar
  23. 23.
    Nkambule BB, Davison G, Ipp H (2014) The value of flow cytometry in the measurement of platelet activation and aggregation in human immunodeficiency virus infection. Platelets 0:1–8Google Scholar
  24. 24.
    Pearson L, Thom J, Adams M, Oostryck R, Krueger R, Yong G, Baker R (2009) A rapid flow cytometric technique for the detection of platelet-monocyte complexes, activated platelets and platelet-derived microparticles. Int J Lab Hematol 31(4):430–439CrossRefPubMedGoogle Scholar
  25. 25.
    Majumder B, North J, Mavroudis C, Rakhit R, Lowdell MW (2012) Improved accuracy and reproducibility of enumeration of platelet–monocyte complexes through use of doublet-discriminator strategy. Cytometry Part B 82(6):353–359CrossRefGoogle Scholar
  26. 26.
    Nagasawa A, Matsuno K, Tamura S, Hayasaka K, Shimizu C, Moriyama T (2013) The basis examination of leukocyte–platelet aggregates with CD45 gating as a novel platelet activation marker. Int J Lab Hematol 35(5):534–541CrossRefPubMedGoogle Scholar
  27. 27.
    Flaujac C, Boukour S, Cramer-Bordé E (2010) Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci 67(4):545–556CrossRefPubMedGoogle Scholar
  28. 28.
    Funderburg NT, Mayne E, Sieg SF, Asaad R, Jiang W, Kalinowska M, Luciano AA, Stevens W, Rodriguez B, Brenchley JM, Douek DC, Lederman MM (2010) Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood 115(2):161–167PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Ziegler-Heitbrock L (2007) The CD14 CD16 blood monocytes: their role in infection and inflammation. J Leukoc Biol 81(3):584–592CrossRefPubMedGoogle Scholar
  30. 30.
    Cros J, Cagnard N, Woollard K, Patey N, Zhang S, Senechal B, Puel A, Biswas SK, Moshous D, Picard C (2010) Human CD14 dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33(3):375–386PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    IngersolL MA, Platt AM, Potteaux S, Randolph GJ (2011) Monocyte trafficking in acute and chronic inflammation. Trends Immunol 32(10):470–477PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Cerletti C, Tamburrelli C, Izzi B, Gianfagna F, De Gaetano G (2012) Platelet-leukocyte interactions in thrombosis. Thromb Res 129(3):263–266CrossRefPubMedGoogle Scholar
  33. 33.
    Podrez EA, Byzova TV, Febbraio M, Salomon RG, MA Y, ValiyaveettiL M, Poliakov E, Sun M, Finton PJ, Curtis BR (2007) Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 13(9):1086–1095PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Investig 108(6):785–791PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL (2006) A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab 4(3):211–221PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Ward JR, Bingle l, Judge HM, Brown SB, Storey RF, Whyte MK, Dower SK, Buttle DJ, Sabroe I (2005) Agonists of toll-like receptor (TLR) 2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thromb Haemost 94:831–838PubMedGoogle Scholar
  37. 37.
    Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, NI H, Lazarus AH, Freedman J, Semple JW (2006) Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 107(2):637–641CrossRefPubMedGoogle Scholar
  38. 38.
    Smith TL, Weyrich AS (2011) Platelets as central mediators of systemic inflammatory responses. Thromb Res 127(5):391–394PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bongani B. Nkambule
    • 1
  • Glenda Davison
    • 2
  • Hayley Ipp
    • 1
  1. 1.Divisions of Haematology, Department of PathologyStellenbosch University and NHLSTygerbergSouth Africa
  2. 2.Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyBellvilleSouth Africa

Personalised recommendations