Journal of Thrombosis and Thrombolysis

, Volume 38, Issue 4, pp 503–509 | Cite as

Edge dissection of calcified plaque as a possible mechanism for acute coronary syndrome

  • Cheol Whan Lee
  • Soo-Jin Kang
  • Jung-Min Ahn
  • Sung-Han Yoon
  • Jong-Young Lee
  • Duk-Woo Park
  • Seung-Whan Lee
  • Young-Hak Kim
  • Seong-Wook Park
  • Seung-Jung Park


We evaluated the incidence and predictors of edge dissection of the calcified culprit plaque in patients with acute coronary syndrome (ACS) or stable angina (SA). Calcified plaque is not rare in patients with ACS, and compliance mismatch may create edge dissection of the calcified plaque to trigger ACS. However, little data are available on calcium edge dissection in relation to ACS. Pre-intervention intravascular ultrasound data were analyzed in 143 patients with ACS (n = 53) or SA (n = 90). Edge dissection of the calcified plaque was found in 14 patients (9.8 %). Patients were divided into two groups based on calcium edge dissection: group I (edge dissection, n = 14) and group II (no edge dissection, n = 129). Clinical and angiographic characteristics were largely similar between the two groups; however, ACS was more common in group I than in group II (64.3 vs. 34.1 %, respectively, p = 0.039). Intravascular ultrasound variables did not differ between the two groups except thrombus and reference measurements, with thrombus more frequently observed in group I than in group II (35.7 vs. 8.5 %, respectively, p = 0.010). Likewise, proximal and distal reference measurements were larger in group I than in group II. Multivariate analysis showed that ACS was the only independent predictor of calcium edge dissection (odds ratio 3.5, 95 % confidence interval 1.1–11.0, p = 0.034). Edge dissection of the calcified plaque was present and more common in ACS patients than in SA patients. Calcium edge dissection may play a role in the pathogenesis of ACS.


Acute coronary syndrome Calcium Dissection 



Acute coronary syndrome


Cross-sectional area


External elastic membrane


Intravascular ultrasound



This study was supported by a grant from the Cardiovascular Research Foundation, and the Korea Health 21 R&D Project, Ministry of Health and Welfare, Republic of Korea (HI12C00300000).

Conflict of interest



  1. 1.
    Alexopoulos N, Raggi P (2009) Calcification in atherosclerosis. Nat Rev Cardiol 6:681–688PubMedCrossRefGoogle Scholar
  2. 2.
    Mintz GS, Pichard AD, Popma JJ, Kent KM, Satler LF, Bucher TA, Leon MB (1997) Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J Am Coll Cardiol 29:268–274PubMedCrossRefGoogle Scholar
  3. 3.
    Shemesh J, Stroh CI, Tenenbaum A, Hod H, Boyko V, Fisman EZ, Motro M (1998) Comparison of coronary calcium in stable angina pectoris and in first acute myocardial infarction utilizing double helical computerized tomography. Am J Cardiol 81:271–275PubMedCrossRefGoogle Scholar
  4. 4.
    Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation 87:1179–1187PubMedCrossRefGoogle Scholar
  5. 5.
    Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056PubMedCrossRefGoogle Scholar
  6. 6.
    Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, Nakamura Y, Yamashita H, Yamagishi H, Takeuchi K, Naruko T, Haze K, Becker AE, Yoshikawa J, Ueda M (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110:3424–3429PubMedCrossRefGoogle Scholar
  7. 7.
    Schmermund A, Erbel R (2001) Unstable coronary plaque and its relation to coronary calcium. Circulation 104:1682–1687PubMedCrossRefGoogle Scholar
  8. 8.
    Li ZY, Howarth S, Tang T, Graves M, U-King-Im J, Gillard JH (2007) Does calcium deposition play a role in the stability of atheroma? Location may be the key. Cerebrovasc Dis 24:452–459PubMedCrossRefGoogle Scholar
  9. 9.
    Mizukoshi M, Kubo T, Takarada S, Kitabata H, Ino Y, Tanimoto T, Komukai K, Tanaka A, Imanishi T, Akasaka T (2013) Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol 112:34–40PubMedCrossRefGoogle Scholar
  10. 10.
    Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, Einav S, Gilchrist L, Weinbaum S (2006) A hypothesis for vulnerable plaquerupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA 103:14678–14683PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hoshino T, Chow LA, Hsu JJ, Perlowski AA, Abedin M, Tobis J, Demer LL (2009) Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am J Physiol Heart Circ Physiol 297:H802–H810PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Katus HA, Lindahl B, Morrow DA, Clemmensen PM, Johanson P, Hod H, Underwood R, Bax JJ, Bonow RO, Pinto F, Gibbons RJ, Fox KA, Atar D, Newby LK, Galvani M, Hamm CW, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasché P, Ravkilde J, Ohman EM, Antman EM, Wallentin LC, Armstrong PW, Simoons ML, Januzzi JL, Nieminen MS, Gheorghiade M, Filippatos G, Luepker RV, Fortmann SP, Rosamond WD, Levy D, Wood D, Smith SC, Hu D, Lopez-Sendon JL, Robertson RM, Weaver D, Tendera M, Bove AA, Parkhomenko AN, Vasilieva EJ, Mendis S, Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction (2012) Third universal definition of myocardial infarction. Circulation 126:2020–2035PubMedCrossRefGoogle Scholar
  13. 13.
    Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18PubMedCrossRefGoogle Scholar
  14. 14.
    Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R (2013) Update on acute coronary syndromes: the pathologists’ view. Eur Heart J 34:719–728PubMedCrossRefGoogle Scholar
  15. 15.
    Lee JB, Mintz GS, Lisauskas JB, Biro SG, Pu J, Sum ST, Madden SP, Burke AP, Goldstein J, Stone GW, Virmani R, Muller JE, Maehara A (2011) Histopathologic validation of the intravascular ultrasound diagnosis of calcified coronary artery nodules. Am J Cardiol 108:1547–1551PubMedCrossRefGoogle Scholar
  16. 16.
    Xu Y, Mintz GS, Tam A, McPherson JA, Iñiguez A, Fajadet J, Fahy M, Weisz G, De Bruyne B, Serruys PW, Stone GW, Maehara A (2012) Prevalence, distribution, predictors, and outcomes of patients with calcified nodules in native coronary arteries: a 3-vessel intravascular ultrasound analysis from Providing Regional Observations to Study Predictors of Events in the Coronary Tree (PROSPECT). Circulation 31(126):537–545CrossRefGoogle Scholar
  17. 17.
    Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944PubMedCrossRefGoogle Scholar
  18. 18.
    Grayburn PA (2012) Interpreting the coronary-artery calcium score. N Engl J Med 366:294–296PubMedCrossRefGoogle Scholar
  19. 19.
    Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291:210–215PubMedCrossRefGoogle Scholar
  20. 20.
    Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, O’Leary DH, Tracy R, Watson K, Wong ND, Kronmal RA (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358:1336–1345PubMedCrossRefGoogle Scholar
  21. 21.
    Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, Flores FR, Callister TQ, Raggi P, Berman DS (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 49:1860–1870PubMedCrossRefGoogle Scholar
  22. 22.
    Fitzgerald PJ, Ports TA, Yock PG (1992) Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation 86:64–70PubMedCrossRefGoogle Scholar
  23. 23.
    Hoshino T, Chow LA, Hsu JJ, Perlowski AA, Abedin M, Tobis J, Tintut Y, Mal AK, Klug WS, Demer LL (2009) Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am J Physiol Heart Circ Physiol 297:H802–H810PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tanaka A, Imanishi T, Kitabata H, Kubo T, Takarada S, Tanimoto T, Kuroi A, Tsujioka H, Ikejima H, Ueno S, Kataiwa H, Okouchi K, Kashiwaghi M, Matsumoto H, Takemoto K, Nakamura N, Hirata K, Mizukoshi M, Akasaka T (2008) Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation 118:2368–2373PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Cheol Whan Lee
    • 1
  • Soo-Jin Kang
    • 1
  • Jung-Min Ahn
    • 1
  • Sung-Han Yoon
    • 1
  • Jong-Young Lee
    • 1
  • Duk-Woo Park
    • 1
  • Seung-Whan Lee
    • 1
  • Young-Hak Kim
    • 1
  • Seong-Wook Park
    • 1
  • Seung-Jung Park
    • 1
    • 2
  1. 1.Department of Medicine, Asan Medical CenterUniversity of UlsanSeoulKorea
  2. 2.Division of Cardiology, Asan Medical CenterUniversity of UlsanSeoulKorea

Personalised recommendations