Journal of Thrombosis and Thrombolysis

, Volume 37, Issue 2, pp 177–185 | Cite as

The effect of CYP2C9, VKORC1 and CYP4F2 polymorphism and of clinical factors on warfarin dosage during initiation and long-term treatment after heart valve surgery

  • Vacis TatarunasEmail author
  • Vaiva Lesauskaite
  • Audrone Veikutiene
  • Pranas Grybauskas
  • Povilas Jakuska
  • Laima Jankauskiene
  • Ruta Bartuseviciute
  • Rimantas Benetis


The dosage of warfarin is restricted due to its narrow therapeutic index, so, the required dose must be adapted individually to each patient. Variations in warfarin dosage are influenced by genetic factors, the changes in patient diet, anthropometric and clinical parameters. To determine whether VKORC1 G3730A and CYP4F2 G1347A genotypes contribute to warfarin dosage in patients during initiation and long-term anticoagulation treatment after heart valve surgery. From totally 307 patients, who underwent heart valve surgery, 189 patients (62 %) who had been treated with warfarin more than 3 months, were included into the study. A hierarchical stepwise multivariate linear regression model showed, that during initiation clinical factors can explain 17 % of the warfarin dose variation. The addition of CYP2C9 and VKORC1 G-1639A genotype raises the accuracy about twice—to 32 %. The CYP4F2 G1347A genotype can add again about 2–34 %. During long-term treatment clinical factors explain about 26 % of warfarin dose variation. If the CYP2C9 *2, *3, VKORC1*2 alleles are detected, model can explain about 49 % in dose variation. The *3 allele of VKORC1 raises the accuracy by 1–50 %. The carriers of CYP4F2 A1347A genotype required higher daily warfarin doses during initiation of warfarin therapy after heart valve surgery than comparing to G/G and G/A carriers, but during the longer periods of warfarin use, the dosage of warfarin depended significantly on VKORC1 *3 allele (G3730A polymorphism) and on the thyroid stimulating hormone level in the blood plasma.


CYP4F2 VKORC1 Anticoagulation treatment Warfarin 



These studies were funded by a Grant (No. LIG-26/2010) from the Research Council of Lithuania.


  1. 1.
    Moreau C, Loriot MA, Siguret V (2012) Vitamin K antagonists: from discovery to pharmacogenetics. Ann Biol Clin 70:539–551Google Scholar
  2. 2.
    Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, Rettie AE (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352:2285–2293PubMedCrossRefGoogle Scholar
  3. 3.
    Lipinski S, Bremer L, Lammers T, Thieme F, Schreiber S, Rosenstiel P (2011) Coagulation and inflammation. Molecular insights and diagnostic implications. Hamostaseologie 31:94–102PubMedCrossRefGoogle Scholar
  4. 4.
    Schalekamp T, de Boer A (2010) Pharmacogenetics of oral anticoagulant therapy. Curr Pharm Des 16:187–203PubMedCrossRefGoogle Scholar
  5. 5.
    Cini M, Legnani C, Cosmi B, Guazzaloca G, Valdrè L, Frascaro M, Palareti G (2012) A new warfarin dosing algorithm including VKORC1 3730 G>A polymorphism: comparison with results obtained by other published algorithms. Eur J Clin Pharmacol 68:1167–1174PubMedCrossRefGoogle Scholar
  6. 6.
    Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, Milligan PE, Grice G, Lenzini P, Rettie AE, Aquilante CL, Grosso L, Marsh S, Langaee T, Farnett LE, Voora D, Veenstra DL, Glynn RJ, Barrett A, McLeod HL (2008) Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 84:326–331PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ozer N, Cam N, Tangurek B, Ozer S, Uyarel H, Oz D, Guney MR, Ciloglu F (2010) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements in an adult Turkish population. Heart Vessels 25:155–162PubMedCrossRefGoogle Scholar
  8. 8.
    Miao L, Yang J, Huang C, Shen Z (2007) Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol 63:1135–1141PubMedCrossRefGoogle Scholar
  9. 9.
    Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333PubMedCrossRefGoogle Scholar
  10. 10.
    Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, Hubbard J, Turpaz Y, Langaee TY, Eby C, King CR, Brower A, Schmelzer JR, Glurich I, Vidaillet HJ, Yale SH, Qi Zhang K, Berg RL, Burmester JK (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111:4106–4112PubMedCrossRefGoogle Scholar
  11. 11.
    McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE (2009) CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol 75:1337–1346PubMedCrossRefGoogle Scholar
  12. 12.
    Bejarano-Achache I, Levy L, Mlynarsky L, Bialer M, Muszkat M, Caraco Y (2012) Effects of CYP4F2 polymorphism on response to warfarin during induction phase: a prospective, open-label, observational cohort study. Clin Ther 34:811–823PubMedCrossRefGoogle Scholar
  13. 13.
    Müllenbach R, Lagoda PJ, Welter C (1989) An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet 5:391PubMedGoogle Scholar
  14. 14.
    Yoo SH, Nah HW, Jo MW, Kang DW, Kim JS, Koh JY, Kwon SU (2009) Age and body weight adjusted warfarin initiation program for ischaemic stroke patients. Eur J Neurol 16:1100–1105PubMedCrossRefGoogle Scholar
  15. 15.
    Loun B, Hage DS (1995) Characterization of thyroxine-albumin binding using high-performance affinity chromatography. II. Comparison of the binding of thyroxine, triiodothyronines and related compounds at the warfarin and indole sites of human serum albumin. J Chromatogr B 665:303–314CrossRefGoogle Scholar
  16. 16.
    Ascenzi P, Fasano M (2010) Allostery in a monomeric protein: the case of human serum albumin. Biophys Chem 148:16–22PubMedCrossRefGoogle Scholar
  17. 17.
    Klotz U (2007) Antiarrhythmics: elimination and dosage considerations in hepatic impairment. Clin Pharmacokinet 46:985–996PubMedCrossRefGoogle Scholar
  18. 18.
    Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Malerba M, Ragnoli B (2008) Ambroxol in the 21st century: pharmacological and clinical update. Expert Opin Drug Metab Toxicol 4:1119–1129PubMedCrossRefGoogle Scholar
  20. 20.
    De Mey C, Peil H, Kölsch S, Bubeck J, Vix JM (2008) Efficacy and safety of ambroxol lozenges in the treatment of acute uncomplicated sore throat. EBM-based clinical documentation. Arzneimittelforschung 58:557–568PubMedGoogle Scholar
  21. 21.
    Wang XM, Hamza M, Gordon SM, Wahl SM, Dionne RA (2008) COX inhibitors downregulate PDE4D expression in a clinical model of inflammatory pain. Clin Pharmacol Ther 84:39–42PubMedCrossRefGoogle Scholar
  22. 22.
    Orme M, Breckenridge A, Brooks RV (1972) Interactions of benzodiazepines with warfarin. Br Med J 3:611–614PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Domenici E, Bertucci C, Salvadori P, Wainer IW (1991) Use of a human serum albumin-based high-performance liquid chromatography chiral stationary phase for the investigation of protein binding: detection of the allosteric interaction between warfarin and benzodiazepine binding sites. J Pharm Sci 80:164–166PubMedCrossRefGoogle Scholar
  24. 24.
    Bird J, Carmona C (2008) Probable interaction between warfarin and torsemide. Ann Pharmacother 42:1893–1898PubMedCrossRefGoogle Scholar
  25. 25.
    Sanderson S, Emery J, Higgins J (2005) CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med 7:97–104PubMedCrossRefGoogle Scholar
  26. 26.
    Du L, Yin H, Morrow JD, Strobel HW, Keeney DS (2009) 20-Hydroxylation is the CYP-dependent and retinoid-inducible leukotriene B4 inactivation pathway in human and mouse skin cells. Arch Biochem Biophys 484:80–86PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Kim HS, Lee SS, Oh M, Jang YJ, Kim EY, Han IY, Cho KH, Shin JG (2009) Effect of CYP2C9 and VKORC1 genotypes on early-phase and steady-state warfarin dosing in Korean patients with mechanical heart valve replacement. Pharmacogenet Genomics 19:103–112PubMedCrossRefGoogle Scholar
  28. 28.
    Huang SW, Chen HS, Wang XQ, Huang L, Xu DL, Hu XJ, Huang ZH, He Y, Chen KM, Xiang DK, Zou XM, Li Q, Ma LQ, Wang HF, Chen BL, Li L, Jia YK, Xu XM (2009) Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharmacogenet Genomics 19:226–234PubMedCrossRefGoogle Scholar
  29. 29.
    Tatarunas V, Lesauskaite V, Veikutiene A, Grybauskas P, Jakuska P, Benetis R (2012) The combined effects of clinical factors and CYP2C9 and VKORC1 gene polymorphisms on initiating warfarin treatment in patients after cardiac valve surgery. J Heart Valve Dis 21:628–635PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vacis Tatarunas
    • 1
    Email author
  • Vaiva Lesauskaite
    • 1
  • Audrone Veikutiene
    • 1
    • 2
  • Pranas Grybauskas
    • 1
  • Povilas Jakuska
    • 1
    • 2
  • Laima Jankauskiene
    • 1
    • 3
  • Ruta Bartuseviciute
    • 1
  • Rimantas Benetis
    • 1
    • 2
  1. 1.Institute of CardiologyLithuanian University of Health SciencesKaunasLithuania
  2. 2.Department of Cardiac, Thoracic, and Vascular SurgeryLithuanian University of Health SciencesKaunasLithuania
  3. 3.Department of Internal DiseasesLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations