Journal of Thrombosis and Thrombolysis

, Volume 35, Issue 1, pp 57–64 | Cite as

Red cell distribution width is a predictor of mortality in patients undergoing percutaneous coronary intervention

  • Omid Fatemi
  • Jaya Paranilam
  • Alex Rainow
  • Kevin Kennedy
  • Jason Choi
  • Donald Cutlip
  • Michael Pencina
  • Peter B. Berger
  • David J. Cohen
  • Neal S. Kleiman


Red cell distribution width (RDW), a measure of the variability in size of circulating erythrocytes, is an independent predictor of mortality in patients with cardiovascular disease. We hypothesized that RDW is a prognostic marker of death, myocardial infarction and unplanned revascularization in a broad population undergoing percutaneous coronary intervention (PCI). We investigated the prognostic value of RDW derived from a complete blood count drawn ≤24 h of PCI in 1,689 patients at four centers who underwent PCI between 2004 and 2007 in the evaluation of drug eluting stents and ischemic events registry. Patients who underwent blood transfusions were excluded. Multivariable analyses of death, MI, unplanned revascularization, and the combined occurrence of these events at 1 year were performed using methods from survival analysis. The analysis was adjusted for creatinine ≥1.5 mg/dL, hemoglobin, congestive heart failure, coronary artery bypass grafting history, male sex, BMI, atherosclerosis of ≥2 coronary vessels, and hypertension. In univariate analysis of RDW stratified by quartiles, membership in the highest quartile was a predictor of mortality as compared to the lowest quartile (HR 5.07, CI 2.07–12.40, p < 0.001). In multivariate analysis, RDW was not an independent predictor of unplanned revascularization after PCI; however, RDW remained an independent correlate of 1 year mortality (HR 1.65, CI 1.22–2.23, p = 0.001); with a continuous net reclassification improvement of 46.5 % (95 % CI 15.1–76.4 %) and a relative integrated discrimination improvement of 57.8 % (95 % CI 22.1–94.9 %) after PCI. RDW is a widely available independent correlate of 1-year mortality after PCI that increases the discriminative value of risk prediction in these patients.




  1. 1.
    Zalawadiya SK, Veeranna V, Niraj A, Pradhan J, Afonso L (2010) Red cell distribution width and risk of coronary heart disease events. Am J Cardiol 106(7):988–993PubMedCrossRefGoogle Scholar
  2. 2.
    Patel KV, Ferrucci L, Ershler WB, Longo DL, Guralnik JM (2009) Red blood cell distribution width and the risk of death in middle-aged and older adults. Arch Intern Med 169(5):515–523PubMedCrossRefGoogle Scholar
  3. 3.
    Perlstein TS, Weuve J, Pfeffer MA, Beckman JA (2009) Red blood cell distribution width and mortality risk in a community-based prospective cohort. Arch Intern Med 169(6):588–594PubMedCrossRefGoogle Scholar
  4. 4.
    Poludasu S, Marmur JD, Weedon J, Khan W, Cavusoglu E (2009) Red cell distribution width (RDW) as a predictor of long-term mortality in patients undergoing percutaneous coronary intervention. Thromb Haemost 102(3):581–587PubMedGoogle Scholar
  5. 5.
    Jacob S, Cohen DJ, Massaro J, Niemyski P, Maresh K, Kleiman N (2005) Design of a registry to characterize “real-world” outcomes of percutaneous coronary revascularization in the drug-eluting stent era. Am Heart J 150(5):887–892PubMedCrossRefGoogle Scholar
  6. 6.
    Win HK, Caldera AE, Maresh K et al (2007) Clinical outcomes and stent thrombosis following off-label use of drug-eluting stents. JAMA 297(18):2001–2009PubMedCrossRefGoogle Scholar
  7. 7.
    Cuzick J (1985) A Wilcoxon-type test for trend. Stat Med 4(1):87–90PubMedCrossRefGoogle Scholar
  8. 8.
    Pencina MJ, D’Agostino RB, D’Agostino RB Sr, Vasan RS Jr (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27(2):157–172 discussion 207–12PubMedCrossRefGoogle Scholar
  9. 9.
    Pencina MJ, D’Agostino RB Sr, Steyerberg EW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30(1):11–21PubMedCrossRefGoogle Scholar
  10. 10.
    Pencina MJ, D’Agostino RB Sr, Demler OV (2012) Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. Stat Med 31:101–113PubMedCrossRefGoogle Scholar
  11. 11.
    Allen LA, Felker GM, Mehra MR et al (2010) Validation and potential mechanisms of red cell distribution width as a prognostic marker in heart failure. J Card Fail 16(3):230–238PubMedCrossRefGoogle Scholar
  12. 12.
    Felker GM, Allen LA, Pocock SJ et al (2007) Red cell distribution width as a novel prognostic marker in heart failure: data from the CHARM Program and the Duke databank. J Am Coll Cardiol 50(1):40–47PubMedCrossRefGoogle Scholar
  13. 13.
    van Kimmenade RR, Mohammed AA, Uthamalingam S, van der Meer P, Felker GM, Januzzi JL Jr (2010) Red blood cell distribution width and 1-year mortality in acute heart failure. Eur J Heart Fail 12(2):129–136PubMedCrossRefGoogle Scholar
  14. 14.
    Tonelli M, Sacks F, Arnold M, Moye L, Davis B, Pfeffer M (2008) Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation 117(2):163–168PubMedCrossRefGoogle Scholar
  15. 15.
    Ani C, Ovbiagele B (2009) Elevated red blood cell distribution width predicts mortality in persons with known stroke. J Neurol Sci 277(1–2):103–108PubMedCrossRefGoogle Scholar
  16. 16.
    Cavusoglu E, Chopra V, Gupta A et al (2010) Relation between red blood cell distribution width (RDW) and all-cause mortality at 2 years in an unselected population referred for coronary angiography. Int J Cardiol 141(2):141–146PubMedCrossRefGoogle Scholar
  17. 17.
    Dabbah S, Hammerman H, Markiewicz W, Aronson D (2010) Relation between red cell distribution width and clinical outcomes after acute myocardial infarction. Am J Cardiol 105(3):312–317PubMedCrossRefGoogle Scholar
  18. 18.
    Lippi G, Targher G, Montagnana M, Salvagno GL, Zoppini G, Guidi GC (2009) Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. Arch Pathol Lab Med 133(4):628–632PubMedGoogle Scholar
  19. 19.
    Forhecz Z, Gombos T, Borgulya G, Pozsonyi Z, Prohaszka Z, Janoskuti L (2009) Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am Heart J 158(4):659–666PubMedCrossRefGoogle Scholar
  20. 20.
    Ghaffari S (2008) Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal 10(11):1923–1940PubMedCrossRefGoogle Scholar
  21. 21.
    Wen Y (2010) High red blood cell distribution width is closely associated with risk of carotid artery atherosclerosis in patients with hypertension. Exp Clin Cardiol 15(3):37–40PubMedGoogle Scholar
  22. 22.
    de Sauvage FJ, Hass PE, Spencer SD et al (1994) Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369(6481):533–538PubMedCrossRefGoogle Scholar
  23. 23.
    Stohlawetz PJ, Dzirlo L, Hergovich N et al (2000) Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood 95(9):2983–2989PubMedGoogle Scholar
  24. 24.
    Guthikonda S, Alviar CL, Vaduganathan M et al (2008) Role of reticulated platelets and platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable coronary artery disease. J Am Coll Cardiol 52(9):743–749PubMedCrossRefGoogle Scholar
  25. 25.
    Arbustini E (2007) Total erythrocyte membrane cholesterol: an innocent new marker or an active player in acute coronary syndromes? J Am Coll Cardiol 49(21):2090–2092PubMedCrossRefGoogle Scholar
  26. 26.
    Kolodgie FD, Gold HK, Burke AP et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349(24):2316–2325PubMedCrossRefGoogle Scholar
  27. 27.
    Pasterkamp G, Virmani R (2002) The erythrocyte: a new player in atheromatous core formation. Heart 88(2):115–116PubMedCrossRefGoogle Scholar
  28. 28.
    Sun Q, Ma J, Campos H et al (2007) A prospective study of trans fatty acids in erythrocytes and risk of coronary heart disease. Circulation 115(14):1858–1865PubMedCrossRefGoogle Scholar
  29. 29.
    Turitto VT, Weiss HJ (1980) Red blood cells: their dual role in thrombus formation. Science 207(4430):541–543PubMedCrossRefGoogle Scholar
  30. 30.
    Tziakas DN, Kaski JC, Chalikias GK et al (2007) Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome: a new marker of clinical instability? J Am Coll Cardiol 49(21):2081–2089PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Omid Fatemi
    • 1
  • Jaya Paranilam
    • 2
  • Alex Rainow
    • 3
  • Kevin Kennedy
    • 4
  • Jason Choi
    • 5
  • Donald Cutlip
    • 5
    • 6
  • Michael Pencina
    • 6
    • 7
  • Peter B. Berger
    • 8
  • David J. Cohen
    • 4
  • Neal S. Kleiman
    • 2
  1. 1.Washington Hospital CenterWashington USA
  2. 2.Methodist DeBakey Heart & Vascular CenterHoustonUSA
  3. 3.Dartmouth-Hitchcock Medical CenterLebanonUSA
  4. 4.Saint Luke’s Mid America Heart InstituteKansas CityUSA
  5. 5.Beth Israel Deaconess Medical CenterBostonUSA
  6. 6.Harvard Clinical Research InstituteBostonUSA
  7. 7.Boston University School of Public HealthBostonUSA
  8. 8.Geisinger ClinicDanvilleUSA

Personalised recommendations