Journal of Thrombosis and Thrombolysis

, Volume 30, Issue 3, pp 378–389

A clinical cardiology perspective of thrombophilias

Article

Abstract

Thrombophilias, an inherited and/or acquired predisposition to vascular thrombosis beyond hemostatic needs are common in cardiovascular medicine and include systemic disorders such as coronary atherosclerosis, atrial fibrillation, exogenous obesity, metabolic syndrome, collagen vascular disease, human immunodeficiency virus, blood replacement therapy and several commonly used medications. A contemporary approach to patients with suspected thrombophilias, in addition to a very selective investigation for gain-of-function and loss-of-function gene mutations affecting thromboresistance, must consider prevalent diseases and management decisions encountered regularly by cardiologists in clinical practice. An appropriate recognition of common disease states as thrombophilias will also stimulate platforms for much needed scientific investigation.

Keywords

Thrombophilia Arterial thrombosis Cardiovascular disease 

References

  1. 1.
    Andreotti F, Becker RC (2005) Atherothrombotic disorders: new insights from hematology. Circulation 111:1855–1863PubMedCrossRefGoogle Scholar
  2. 2.
    Feinbloom D, Bauer KA (2005) Assessment of hemostatic risk factors in predicting arterial thrombotic events. Arter Thromb Vasc Biol 25:2043–2053CrossRefGoogle Scholar
  3. 3.
    Varughese GI, Lip GY (2005) Is hypertension a prothrombotic state? Curr Hypertens Rep 7(3):168–173PubMedCrossRefGoogle Scholar
  4. 4.
    Bernhardt P et al (2006) Atrial fibrillation—patients at high risk for cerebral embolism. Clin Res Cardiol 95(3):148–153PubMedCrossRefGoogle Scholar
  5. 5.
    Ogren M et al (2005) Prevalence and risk of pulmonary embolism in patients with intracardiac thrombosis: a population-based study of 23796 consecutive autopsies. Eur Heart J 26(11):1108–1114PubMedCrossRefGoogle Scholar
  6. 6.
    Stenestrand U, Lindback J, Wallentin L (2005) Anticoagulation therapy in atrial fibrillation in combination with acute myocardial infarction influences long-term outcome: a prospective cohort study from the Register of Information and Knowledge About Swedish Heart Intensive Care Admissions (RIKS-HIA). Circulation 112(21):3225–3231PubMedCrossRefGoogle Scholar
  7. 7.
    Kamath S et al (2002) A study of platelet activation in paroxysmal, persistent and permanent atrial fibrillation. Blood Coagul Fibrinolysis 13(7):627–636PubMedCrossRefGoogle Scholar
  8. 8.
    Nakamura Y et al (2003) Tissue factor expression in atrial endothelia associated with nonvalvular atrial fibrillation: possible involvement in intracardiac thrombogenesis. Thromb Res 111(3):137–142PubMedCrossRefGoogle Scholar
  9. 9.
    Roldan V et al (2003) Interleukin-6, endothelial activation and thrombogenesis in chronic atrial fibrillation. Eur Heart J 24(14):1373–1380PubMedCrossRefGoogle Scholar
  10. 10.
    Marin F et al (2003) Is thrombogenesis in atrial fibrillation related to matrix metalloproteinase-1 and its inhibitor, TIMP-1? Stroke 34(5):1181–1186PubMedCrossRefGoogle Scholar
  11. 11.
    Chung MK et al (2001) C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104(24):2886–2891PubMedCrossRefGoogle Scholar
  12. 12.
    Aviles RJ et al (2003) Inflammation as a risk factor for atrial fibrillation. Circulation 108(24):3006–3010PubMedCrossRefGoogle Scholar
  13. 13.
    Gaudino M et al (2003) The -174G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication? Circulation 108(Suppl 1):195–199Google Scholar
  14. 14.
    Postma AV et al (2009) Developmental and genetic aspects of atrial fibrillation. Trends Cardiovasc Med 19(4):123–130PubMedCrossRefGoogle Scholar
  15. 15.
    Vanhoutte K et al (2009) Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients—a systems biology approach to clinical categorization. Bioinformation 3(6):275–278PubMedGoogle Scholar
  16. 16.
    White H et al (2005) Ischemic stroke subtype incidence among whites, blacks, and Hispanics: the Northern Manhattan Study. Circulation 111:1327–1331PubMedCrossRefGoogle Scholar
  17. 17.
    Dudley SC Jr et al (2005) Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation 112(9):1266–1273PubMedCrossRefGoogle Scholar
  18. 18.
    Tapson VF et al (2005) Antithrombotic therapy practices in US hospitals in an era of practice guidelines. Arch Intern Med 165(13):1458–1464PubMedCrossRefGoogle Scholar
  19. 19.
    Lowe GD (2006) Can haematological tests predict cardiovascular risk? The 2005 Kettle Lecture. Br J Haematol 133(3):232–250PubMedCrossRefGoogle Scholar
  20. 20.
    CDC (Centers for Disease Control and Prevention) (2004) HIV/Aids surveillance report, 2004. US Dept of Health and Human Services, Centers for Disease Control and Prevention, AtlantaGoogle Scholar
  21. 21.
    Sloand E (2005) Hematologic complications of HIV infection. AIDS Rev 7(4):187–196PubMedGoogle Scholar
  22. 22.
    Saif MW, Bona R, Greenberg B (2001) AIDS and thrombosis: retrospective study of 131 HIV-infected patients. AIDS Patient Care STDs 15(6):311–320PubMedCrossRefGoogle Scholar
  23. 23.
    Ford ES et al (2010) Traditional risk factors and D-dimer predict incident cardiovascular disease events in chronic HIV infection. AIDS 24(10):1509–1517PubMedCrossRefGoogle Scholar
  24. 24.
    Giordano N et al (2005) Possible pathogenetic role of antiphospholipid antibodies in a clinical case of human immunodeficiency virus infection with peripheral polyneuropathy and arterial thrombosis. New Microbiol 28(3):261–263PubMedGoogle Scholar
  25. 25.
    Ramos-Casals M et al (2004) Clinical features related to antiphospholipid syndrome in patients with chronic viral infections (hepatitis C virus/HIV infection): description of 82 cases. Clin Infect Dis 38(7):1009–1016PubMedCrossRefGoogle Scholar
  26. 26.
    Erbe M et al (2003) Acquired protein C and protein S deficiency in HIV-infected patients. Clin Appl Thromb Hemost 9(4):325–331PubMedCrossRefGoogle Scholar
  27. 27.
    Jacobson MC, Dezube BJ, Aboulafia DM (2004) Thrombotic complications in patients infected with HIV in the era of highly active antiretroviral therapy: a case series. Clin Infect Dis 39(8):1214–1222PubMedCrossRefGoogle Scholar
  28. 28.
    Satchell CS et al (2010) Platelet function and HIV: a case-control study. AIDS 24(5):649–657PubMedCrossRefGoogle Scholar
  29. 29.
    Pontrelli G et al (2010) HIV is associated with thrombophilia and high D-dimer in children and adolescents. AIDS 24(8):1145–1151PubMedCrossRefGoogle Scholar
  30. 30.
    Jong E et al (2009) The hemostatic balance in HIV-infected patients with and without antiretroviral therapy: partial restoration with antiretroviral therapy. AIDS Patient Care STDs 23(12):1001–1007PubMedCrossRefGoogle Scholar
  31. 31.
    Trubo R (2005) Researchers investigate factors linked to development of secondary diabetes. JAMA 294(6):668–670PubMedCrossRefGoogle Scholar
  32. 32.
    van Wijk JP et al (2006) Functional and structural markers of atherosclerosis in human immunodeficiency virus-infected patients. J Am Coll Cardiol 47(6):1117–1123PubMedCrossRefGoogle Scholar
  33. 33.
    Falasca K et al (2006) Associations between hypertriglyceridemia and serum ghrelin, adiponectin, and IL-18 levels in HIV-infected patients. Ann Clin Lab Sci 36(1):59–66PubMedGoogle Scholar
  34. 34.
    Barbaro G (2006) Metabolic and cardiovascular complications of highly active antiretroviral therapy for HIV infection. Curr HIV Res 4(1):79–85PubMedCrossRefGoogle Scholar
  35. 35.
    Lagathu C et al (2004) Antiretroviral drugs with adverse effects on adipocyte lipid metabolism and survival alter the expression and secretion of proinflammatory cytokines and adiponectin in vitro. Antivir Ther 9(6):911–920PubMedGoogle Scholar
  36. 36.
    Calza L et al (2005) Rosuvastatin for the treatment of hyperlipidaemia in HIV-infected patients receiving protease inhibitors: a pilot study. AIDS 19(10):1103–1105PubMedCrossRefGoogle Scholar
  37. 37.
    Romero-Diaz J, Garcia-Sosa I, Sanchez-Guerrero J (2009) Thrombosis in systemic lupus erythematosus and other autoimmune diseases of recent onset. J Rheumatol 36(1):68–75PubMedGoogle Scholar
  38. 38.
    Sattar N et al (2003) Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108(24):2957–2963PubMedCrossRefGoogle Scholar
  39. 39.
    Van Doornum S, McColl G, Wicks IP (2002) Accelerated atherosclerosis: an extraarticular feature of rheumatoid arthritis? Arthritis Rheum 46(4):862–873PubMedCrossRefGoogle Scholar
  40. 40.
    McEntegart A et al (2001) Cardiovascular risk factors, including thrombotic variables, in a population with rheumatoid arthritis. Rheumatology (Oxford) 40(6):640–644CrossRefGoogle Scholar
  41. 41.
    Manson JJ, Rahman A (2006) Systemic lupus erythematosus. Orphanet J Rare Dis 1:6PubMedCrossRefGoogle Scholar
  42. 42.
    Krishnan S, Chowdhury B, Tsokos GC (2006) Autoimmunity in systemic lupus erythematosus: integrating genes and biology. Semin Immunol 18(4):230–243PubMedCrossRefGoogle Scholar
  43. 43.
    Petri M (2010) Update on anti-phospholipid antibodies in SLE: the Hopkins’ Lupus Cohort. Lupus 19(4):419–423PubMedCrossRefGoogle Scholar
  44. 44.
    Lopez LR et al (2005) OxLDL/beta2GPI complexes and autoantibodies in patients with systemic lupus erythematosus, systemic sclerosis, and antiphospholipid syndrome: pathogenic implications for vascular involvement. Ann NY Acad Sci 1051:313–322PubMedCrossRefGoogle Scholar
  45. 45.
    Nojima J et al (2005) Acquired activated protein C resistance associated with IgG antibodies against beta2-glycoprotein I and prothrombin as a strong risk factor for venous thromboembolism. Clin Chem 51(3):545–552PubMedCrossRefGoogle Scholar
  46. 46.
    Pereira J et al (2006) Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb Haemost 95(1):94–99PubMedGoogle Scholar
  47. 47.
    Burgos PI et al (2010) Factors predictive of thrombotic events in LUMINA, a multi-ethnic cohort of SLE patients (LXXII). Rheumatology (Epub ahead of print)Google Scholar
  48. 48.
    Ho KT et al (2005) Systemic lupus erythematosus in a multiethnic cohort (LUMINA): XXVIII. Factors predictive of thrombotic events. Rheumatology (Oxford) 44(10):1303–1307CrossRefGoogle Scholar
  49. 49.
    Potti A et al (2006) Gene-expression patterns predict phenotypes of immune-mediated thrombosis. Blood 107:1391–1396PubMedCrossRefGoogle Scholar
  50. 50.
    Carvalho D et al (1996) IgG antiendothelial cell autoantibodies from scleroderma patients induce leukocyte adhesion to human vascular endothelial cells in vitro. Induction of adhesion molecule expression and involvement of endothelium-derived cytokines. J Clin Invest 97(1):111–119PubMedCrossRefGoogle Scholar
  51. 51.
    Whittaker R, Barnett A, Ryan P (1993) Antiphospholipid syndrome in scleroderma. J Rheumatol 20(9):1598–1600PubMedGoogle Scholar
  52. 52.
    Quereda C et al (1991) Thrombotic microangiopathic nephropathy in scleroderma and lupus anticoagulant. Nephron 59(4):651–653PubMedCrossRefGoogle Scholar
  53. 53.
    Chung L, Fiorentino D (2006) Digital ulcers in patients with systemic sclerosis. Autoimmun Rev 5(2):125–128PubMedCrossRefGoogle Scholar
  54. 54.
    Manadan AM, Harris C, Block JA (2005) Thrombotic thrombocytopenic purpura in the setting of systemic sclerosis. Semin Arthritis Rheum 34(4):683–688PubMedCrossRefGoogle Scholar
  55. 55.
    Shapiro LS (1990) Large vessel arterial thrombosis in systemic sclerosis associated with antiphospholipid antibodies. J Rheumatol 17(5):685–688PubMedGoogle Scholar
  56. 56.
    Worthley MI et al (2001) Scleroderma cardiomyopathy presenting with thromboembolism. Int Med J 31(1):64–65CrossRefGoogle Scholar
  57. 57.
    Scott JP, Arroyave C (1987) Activation of complement and coagulation in juvenile dermatomyositis. Arthritis Rheum 30(5):572–576PubMedCrossRefGoogle Scholar
  58. 58.
    Silver RM, Maricq HR (1989) Childhood dermatomyositis: serial microvascular studies. Pediatrics 83(2):278–283PubMedGoogle Scholar
  59. 59.
    Davatchi F et al (2010) How to deal with Behcet’s disease in daily practice. Int J Rheum Dis 13(2):105–116PubMedCrossRefGoogle Scholar
  60. 60.
    Egan AC et al (2005) Endocarditis and ulnar artery aneurysm as presenting features of antiphospholipid syndrome and polyarteritis nodosa. Lupus 14(11):914–917PubMedCrossRefGoogle Scholar
  61. 61.
    Fujisaki K et al (2005) Thrombotic thrombocytopenic purpura associated with polyarteritis nodosa. Clin Nephrol 64(4):305–310PubMedGoogle Scholar
  62. 62.
    Papa A et al (2006) Early atherosclerosis in patients with inflammatory bowel disease. Eur Rev Med Pharmacol Sci 10(1):7–11PubMedGoogle Scholar
  63. 63.
    Novacek G et al (2004) Aortic mural thrombi in patients with inflammatory bowel disease: report of two cases and review of the literature. Inflamm Bowel Dis 10(4):430–435PubMedCrossRefGoogle Scholar
  64. 64.
    Zezos P et al (2005) Hyperhomocysteinemia in ulcerative colitis is related to folate levels. World J Gastroenterol 11(38):6038–6042PubMedGoogle Scholar
  65. 65.
    Saibeni S et al (2004) Assessment of thrombin-activatable fibrinolysis inhibitor (TAFI) plasma levels in inflammatory bowel diseases. Am J Gastroenterol 99(10):1966–1970PubMedCrossRefGoogle Scholar
  66. 66.
    Fagerstam JP, Whiss PA (2006) Higher platelet P-selectin in male patients with inflammatory bowel disease compared to healthy males. World J Gastroenterol 12(8):1270–1272PubMedGoogle Scholar
  67. 67.
    Koutroubakis IE et al (2004) Association between enhanced soluble CD40 ligand and prothrombotic state in inflammatory bowel disease. Eur J Gastroenterol Hepatol 16(11):1147–1152PubMedCrossRefGoogle Scholar
  68. 68.
    Attvall E, Frigyesi A, Sternby B (2006) What is the impact of resistance to activated protein C (Leiden mutation to factor V) in inflammatory bowel disease? Int J Colorectal Dis 21(7):705–710PubMedCrossRefGoogle Scholar
  69. 69.
    Alexander KP et al (2005) Excess dosing of antiplatelet and antithrombin agents in the treatment of non-ST-segment elevation acute coronary syndromes. JAMA 294(24):3108–3116PubMedCrossRefGoogle Scholar
  70. 70.
    Yusuf S et al (2006) Comparison of fondaparinux and enoxaparin in acute coronary syndromes. N Engl J Med 354:1464–1476PubMedCrossRefGoogle Scholar
  71. 71.
    Mehran R et al (2010) A risk score to predict bleeding in patients with acute coronary syndromes. J Am Coll Cardiol 55(23):2556–2566PubMedCrossRefGoogle Scholar
  72. 72.
    Cavender MA, Rao SV (2010) Bleeding associated with current therapies for acute coronary syndrome: what are the mechanisms? J Thromb Thrombolysis (Epub ahead of print)Google Scholar
  73. 73.
    Afshar-Kharghan V, Thiagarajan P (2006) Leukocyte adhesion and thrombosis. Curr Opin Hematol 13(1):34–39PubMedCrossRefGoogle Scholar
  74. 74.
    Tobu M et al (2004) Erythropoietin-induced thrombosis as a result of increased inflammation and thrombin activatable fibrinolytic inhibitor. Clin Appl Thromb Hemost 10(3):225–232PubMedCrossRefGoogle Scholar
  75. 75.
    Fuste B et al (2002) Erythropoietin triggers a signaling pathway in endothelial cells and increases the thrombogenicity of their extracellular matrices in vitro. Thromb Haemost 88(4):678–685PubMedGoogle Scholar
  76. 76.
    Rao SV et al (2009) Standardized reporting of bleeding complications for clinical investigations in acute coronary syndromes: a proposal from the academic bleeding consensus (ABC) multidisciplinary working group. Am Heart J 158(6):881–886 e1PubMedCrossRefGoogle Scholar
  77. 77.
    Yaggi HK et al (2005) Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 353(19):2034–2041PubMedCrossRefGoogle Scholar
  78. 78.
    Bassetti CL, Milanova M, Gugger M (2006) Sleep-disordered breathing and acute ischemic stroke: diagnosis, risk factors, treatment, evolution, and long-term clinical outcome. Stroke 37(4):967–972Google Scholar
  79. 79.
    Dikmenoglu N et al (2006) Erythrocyte deformability, plasma viscosity and oxidative status in patients with severe obstructive sleep apnea syndrome. Sleep Med 7(3):255–261PubMedCrossRefGoogle Scholar
  80. 80.
    Stein PD et al (2004) Venous thromboembolism according to age: the impact of an aging population. Arch Intern Med 164(20):2260–2265PubMedCrossRefGoogle Scholar
  81. 81.
    Kim RJ, Becker RC (2003) Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and events of the arterial circulatory system: a meta-analysis of published studies. Am Heart J 146:948–957PubMedCrossRefGoogle Scholar
  82. 82.
    Dahlback B (1997) Resistance to activated protein C as risk factor for thrombosis: molecular mechanisms, laboratory investigation, and clinical management. Semin Hematol 34(3):217–234PubMedGoogle Scholar
  83. 83.
    Nowak-Gottl U et al (1999) Lipoprotein (a) and genetic polymorphisms of clotting factor V, prothrombin, and methylenetetrahydrofolate reductase are risk factors of spontaneous ischemic stroke in childhood. Blood 94(11):3678–3682PubMedGoogle Scholar
  84. 84.
    Tofler GH et al (2005) Relation of the prothrombotic state to increasing age (from the Framingham Offspring Study). Am J Cardiol 96(9):1280–1283PubMedCrossRefGoogle Scholar
  85. 85.
    Yamashita T et al (2005) Significantly reduced spontaneous thrombolytic activity in older men: a possible explanation for the gender differences in risk of acute coronary syndromes. Thromb Res 116(2):127–131PubMedCrossRefGoogle Scholar
  86. 86.
    Yamamoto K et al (2005) Aging and plasminogen activator inhibitor-1 (PAI-1) regulation: implication in the pathogenesis of thrombotic disorders in the elderly. Cardiovasc Res 66(2):276–285PubMedCrossRefGoogle Scholar
  87. 87.
    Reiner AP et al (2005) Common promoter polymorphisms of inflammation and thrombosis genes and longevity in older adults: the cardiovascular health study. Atherosclerosis 181(1):175–183PubMedCrossRefGoogle Scholar
  88. 88.
    Goldschmidt-Clermont PJ (2003) Loss of bone marrow-derived vascular progenitor cells leads to inflammation and atherosclerosis. Am Heart J 146(4 Suppl):S5–S12PubMedCrossRefGoogle Scholar
  89. 89.
    Karra R et al (2005) Molecular evidence for arterial repair in atherosclerosis. Proc Natl Acad Sci U S A 102(46):16789–16794PubMedCrossRefGoogle Scholar
  90. 90.
    Rauscher FM et al (2003) Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108(4):457–463PubMedCrossRefGoogle Scholar
  91. 91.
    George J et al (2005) Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arter Thromb Vasc Biol 25(12):2636–2641CrossRefGoogle Scholar
  92. 92.
    Poirier P et al (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113(6):898–918PubMedCrossRefGoogle Scholar
  93. 93.
    Goldhaber SZ et al (1997) A prospective study of risk factors for pulmonary embolism in women. JAMA 277(8):642–645PubMedCrossRefGoogle Scholar
  94. 94.
    Blaszyk H et al (1999) Death from pulmonary thromboembolism in severe obesity: lack of association with established genetic and clinical risk factors. Virchows Arch 434(6):529–532PubMedCrossRefGoogle Scholar
  95. 95.
    Stein PD, Beemath A, Olson RE (2005) Obesity as a risk factor in venous thromboembolism. Am J Med 118(9):978–980PubMedCrossRefGoogle Scholar
  96. 96.
    Hamad GG, Choban PS (2005) Enoxaparin for thromboprophylaxis in morbidly obese patients undergoing bariatric surgery: findings of the prophylaxis against VTE outcomes in bariatric surgery patients receiving enoxaparin (PROBE) study. Obes Surg 15(10):1368–1374PubMedCrossRefGoogle Scholar
  97. 97.
    Poirier P et al (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arter Thromb Vasc Biol 26(5):968–976CrossRefGoogle Scholar
  98. 98.
    Grignani G, Maiolo A (2000) Cytokines and hemostasis. Haematologica 85(9):967–972PubMedGoogle Scholar
  99. 99.
    Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arter Thromb Vasc Biol 25(10):2062–2068CrossRefGoogle Scholar
  100. 100.
    Engstrom G et al (2004) Incidence of obesity-associated cardiovascular disease is related to inflammation-sensitive plasma proteins: a population-based cohort study. Arter Thromb Vasc Biol 24(8):1498–1502CrossRefGoogle Scholar
  101. 101.
    Schernthaner GH et al (2006) Soluble CD40L in patients with morbid obesity: significant reduction after bariatric surgery. Eur J Clin Invest 36(6):395–401PubMedCrossRefGoogle Scholar
  102. 102.
    Goichot B et al (2006) Circulating procoagulant microparticles in obesity. Diabet Metab 32(1):82–85CrossRefGoogle Scholar
  103. 103.
    Writing Group Members (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215CrossRefGoogle Scholar
  104. 104.
    Lemkes BA et al (2010) Hyperglycaemia, a prothrombotic factor? J Thromb Haemostasis (Epub ahead of print)Google Scholar
  105. 105.
    Neubauer H et al (2010) Influence of glycaemic control on platelet bound CD40-CD40L system, P-selectin and soluble CD40 ligand in Type 2 diabetes. Diabet Med (a journal of the British Diabetic Association) 27(4):384–390Google Scholar
  106. 106.
    Mortensen SB et al (2010) Reduced platelet response to aspirin in patients with coronary artery disease and type 2 diabetes mellitus. Thromb Res (Epub ahead of print)Google Scholar
  107. 107.
    Gresele P et al (2010) Hyperglycemia-induced platelet activation in type 2 diabetes is resistant to aspirin but not to a nitric oxide-donating agent. Diabet Care 33(6):1262–1268CrossRefGoogle Scholar
  108. 108.
    Angiolillo DJ et al (2010) Impact of chronic kidney disease on platelet function profiles in diabetes mellitus patients with coronary artery disease taking dual antiplatelet therapy. J Am Coll Cardiol 55(11):1139–1146PubMedCrossRefGoogle Scholar
  109. 109.
    Wright RJ et al (2010) Effects of acute insulin-induced hypoglycemia on indices of inflammation: putative mechanism for aggravating vascular disease in diabetes. Diabet Care 33(7):1591–1597CrossRefGoogle Scholar
  110. 110.
    Urbich C et al (2002) CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation 106(8):981–986PubMedCrossRefGoogle Scholar
  111. 111.
    Nielsen HJ et al (1997) Leucocyte-derived bioactive substances in fresh frozen plasma. Br J Anaesth 78(5):548–552PubMedGoogle Scholar
  112. 112.
    Hedstrom M et al (1996) Autologous blood transfusion in hip replacement. No effect on blood loss but less increase of plasminogen activator inhibitor in a randomized series of 80 patients. Acta Orthop Scand 67(4):317–320PubMedCrossRefGoogle Scholar
  113. 113.
    Pawloski JR, Stamler JS (2002) Nitric oxide in RBCs. Transfusion 42(12):1603–1609PubMedCrossRefGoogle Scholar
  114. 114.
    Schonbeck U et al (2001) Soluble CD40L and cardiovascular risk in women. Circulation 104(19):2266–2268PubMedCrossRefGoogle Scholar
  115. 115.
    Eren M et al (2002) Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation 106(4):491–496PubMedCrossRefGoogle Scholar
  116. 116.
    Brodsky SV et al (2002) Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential. Circulation 106(18):2372–2378PubMedCrossRefGoogle Scholar
  117. 117.
    Sabovic M, Zorman SK (2003) Plasminogen activator inhibitor-1, which is released from blood product transfusions, might be associated with (sub)acute thrombosis after coronary dilatation and stenting: a case report. Heart Vessels 18(1):47–49PubMedCrossRefGoogle Scholar
  118. 118.
    Bor-Kucukatay M et al (2003) Effects of nitric oxide on red blood cell deformability. Am J Physiol Heart Circ Physiol 284(5):H1577–H1584PubMedGoogle Scholar
  119. 119.
    Tsai AG, Cabrales P, Intaglietta M (2004) Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions. Transfusion 44(11):1626–1634PubMedCrossRefGoogle Scholar
  120. 120.
    Xiao Z, Theroux P (2004) Clopidogrel inhibits platelet-leukocyte interactions and thrombin receptor agonist peptide-induced platelet activation in patients with an acute coronary syndrome. J Am Coll Cardiol 43(11):1982–1988PubMedCrossRefGoogle Scholar
  121. 121.
    Vucic S et al (2004) Thromboembolic complications of intravenous immunoglobulin treatment. Eur Neurol 52(3):141–144PubMedCrossRefGoogle Scholar
  122. 122.
    Paran D et al (2005) Venous and arterial thrombosis following administration of intravenous immunoglobulins. Blood Coagul Fibrinolysis 16(5):313–318PubMedCrossRefGoogle Scholar
  123. 123.
    Wolberg AS et al (2000) Coagulation factor XI is a contaminant in intravenous immunoglobulin preparations. Am J Hematol 65(1):30–34PubMedCrossRefGoogle Scholar
  124. 124.
    Bagdasarian A et al (1998) IVIG adverse reactions: potential role of cytokines and vasoactive substances. Vox Sang 74(2):74–82PubMedCrossRefGoogle Scholar
  125. 125.
    Ratner M (2004) Genentech discloses safety concerns over Avastin. Nat Biotechnol 22(10):1198PubMedCrossRefGoogle Scholar
  126. 126.
    Shah MA, Ilson D, Kelsen DP (2005) Thromboembolic events in gastric cancer: high incidence in patients receiving irinotecan- and bevacizumab-based therapy. J Clin Oncol 23(11):2574–2576PubMedCrossRefGoogle Scholar
  127. 127.
    Kilickap S, Abali H, Celik I (2003) Bevacizumab, bleeding, thrombosis, and warfarin. J Clin Oncol 21(18):3542 (author reply 3543)PubMedCrossRefGoogle Scholar
  128. 128.
    Mathew P (2006) Current opinion on inhibitor treatment options. Semin Hematol 43(2 Suppl 4):S8–S13PubMedCrossRefGoogle Scholar
  129. 129.
    Allen G, Aledort L (2006) Therapeutic decision-making in inhibitor patients. Am J Hematol 81(1):71–72PubMedCrossRefGoogle Scholar
  130. 130.
    Turecek PL et al (2004) FEIBA: mode of action. Haemophilia 10(Suppl 2):3–9PubMedCrossRefGoogle Scholar
  131. 131.
    Luu H, Ewenstein B (2004) FEIBA safety profile in multiple modes of clinical and home-therapy application. Haemophilia 10(Suppl 2):10–16PubMedCrossRefGoogle Scholar
  132. 132.
    Mayer SA et al (2005) Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 352(8):777–785PubMedCrossRefGoogle Scholar
  133. 133.
    Sorensen B et al (2003) Reversal of the International Normalized Ratio with recombinant activated factor VII in central nervous system bleeding during warfarin thromboprophylaxis: clinical and biochemical aspects. Blood Coagul Fibrinolysis 14(5):469–477PubMedCrossRefGoogle Scholar
  134. 134.
    Galan AM et al (2003) Increased local procoagulant action: a mechanism contributing to the favorable hemostatic effect of recombinant FVIIa in PLT disorders. Transfusion 43(7):885–892PubMedCrossRefGoogle Scholar
  135. 135.
    Romagnoli S et al (2006) Small-dose recombinant activated factor VII (NovoSeven) in cardiac surgery. Anesth Analg 102(5):1320–1326PubMedCrossRefGoogle Scholar
  136. 136.
    MacLaren R et al (2005) A multicenter assessment of recombinant factor VIIa off-label usage: clinical experiences and associated outcomes. Transfusion 45(9):1434–1442PubMedCrossRefGoogle Scholar
  137. 137.
    Laffan M et al (2003) Analysis and results of the recombinant factor VIIa extended-use registry. Blood Coagul Fibrinolysis 14(Suppl 1):S35–S38PubMedCrossRefGoogle Scholar
  138. 138.
    Akowuah E et al (2005) Comparison of two strategies for the management of antiplatelet therapy during urgent surgery. Ann Thorac Surg 80(1):149–152PubMedCrossRefGoogle Scholar
  139. 139.
    Mangano DT, Tudor IC, Dietzel C (2006) The risk associated with aprotinin in cardiac surgery. N Engl J Med 354(4):353–365PubMedCrossRefGoogle Scholar
  140. 140.
    Cooper JR Jr et al (2006) Fatal pulmonary microthrombi during surgical therapy for end-stage heart failure: possible association with antifibrinolytic therapy. J Thorac Cardiovasc Surg 131(5):963–968PubMedCrossRefGoogle Scholar
  141. 141.
    Carless PA et al (2005) Are antifibrinolytic drugs equivalent in reducing blood loss and transfusion in cardiac surgery? A meta-analysis of randomized head-to-head trials. BMC Cardiovasc Disord 5:19PubMedCrossRefGoogle Scholar
  142. 142.
    Cheng Y et al (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 296(5567):539–541PubMedCrossRefGoogle Scholar
  143. 143.
    Buerkle MA et al (2004) Selective inhibition of cyclooxygenase-2 enhances platelet adhesion in hamster arterioles in vivo. Circulation 110(14):2053–2059PubMedCrossRefGoogle Scholar
  144. 144.
    Grosser T, Fries S, FitzGerald GA (2006) Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 116(1):4–15PubMedCrossRefGoogle Scholar
  145. 145.
    Egan KM et al (2005) Cyclooxygenases, thromboxane, and atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibition combined with thromboxane receptor antagonism. Circulation 111(3):334–342PubMedCrossRefGoogle Scholar
  146. 146.
    Zarraga IGE, Schwarz ER (2006) Coxibs and heart disease: what we have learned and what else we need to know. J Am Coll Cardiol. doi:p.j.jacc.2006.10.003
  147. 147.
    Cannon CP et al (2006) Cardiovascular outcomes with etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: a randomised comparison. Lancet 368(9549):1771–1781PubMedCrossRefGoogle Scholar
  148. 148.
    Antman EM, DeMets D, Loscalzo J (2005) Cyclooxygenase inhibition and cardiovascular risk. Circulation 112(5):759–770PubMedCrossRefGoogle Scholar
  149. 149.
    Asakura H et al (1992) Prothrombin fragment F1 + 2 and thrombin-antithrombin III complex are useful markers of the hypercoagulable state in atrial fibrillation. Blood Coagul Fibrinolysis 3(4):469–473PubMedGoogle Scholar
  150. 150.
    Shinohara H et al (1998) Relationship between flow dynamics in the left atrium and hemostatic abnormalities in patients with nonvalvular atrial fibrillation. Jpn Heart J 39(6):721–730PubMedGoogle Scholar
  151. 151.
    Sakurai K et al (2003) Left atrial appendage function and abnormal hypercoagulability in patients with atrial flutter. Chest 124(5):1670–1674PubMedCrossRefGoogle Scholar
  152. 152.
    Nakajima K (2000) The relationship between left atrial thrombus and hematological markers in patients with chronic non-rheumatic atrial fibrillation. Nippon Ronen Igakkai Zasshi 37(11):903–907PubMedGoogle Scholar
  153. 153.
    Nakagawa K et al (2001) Relation of fibrillatory wave amplitude with hemostatic abnormality and left atrial appendage dysfunction in patients with chronic nonrheumatic atrial fibrillation. Jpn Circ J 65(5):375–380PubMedCrossRefGoogle Scholar
  154. 154.
    Sohara H et al (1997) Atrial fibrillation activates platelets and coagulation in a time-dependent manner: a study in patients with paroxysmal atrial fibrillation. J Am Coll Cardiol 29(1):106–112PubMedCrossRefGoogle Scholar
  155. 155.
    Ozaydin M et al (2006) Effect of atorvastatin on the recurrence rates of atrial fibrillation after electrical cardioversion. Am J Cardiol 97(10):1490–1493PubMedCrossRefGoogle Scholar
  156. 156.
    Hatzinikolaou-Kotsakou E et al (2003) Atrial fibrillation and hypercoagulability: dependent on clinical factors or/and on genetic alterations? J Thromb Thrombolysis 16(3):155–161PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Divisions of Cardiology and HematologyDuke University School of Medicine, Duke Clinical Research InstituteDurhamUSA

Personalised recommendations