Journal of Thrombosis and Thrombolysis

, Volume 29, Issue 4, pp 489–496 | Cite as

The role of ethnicity, age and gender in venous thromboembolism

  • Martina Montagnana
  • Emmanuel J. Favaloro
  • Massimo Franchini
  • Gian Cesare Guidi
  • Giuseppe Lippi


Venous thromboembolism, including both deep venous thrombosis and pulmonary embolism, is the leading cause of preventable in-hospital mortality. In the inexorable progress towards individualization of risk and personalized medicine, several congenital and acquired risk factors have been identified. However, the influence of some demographical variables, especially ethnicity, age and gender, has largely been under appreciated. Although the incidence of venous thromboembolism varies widely among diverse racial/ethnic cohorts, it appears globally highest in Blacks, is intermediate in Caucasians and is lowest in Asians. The incidence and prevalence of venous thromboembolism is also strongly age-related, increasing nearly 90 fold from <15 to >80 years old. Definitive data on the relative frequency of venous thromboembolism across genders is lacking. Some studies report that gender is not an independent risk factor of venous thromboembolism, while others conclude that female gender might be a protective variable. The purpose of this review is to assess the relationship between such demographic variables and venous thromboembolism.


Thrombosis Venous thromboembolism Age Gender Ethnicity 


  1. 1.
    Ageno W, Squizzato A, Garcia D, Imberti D (2006) Epidemiology and risk factors of venous thromboembolism. Semin Thromb Hemost 32:651–658. doi: 10.1055/s-2006-951293 PubMedCrossRefGoogle Scholar
  2. 2.
    Lippi G, Franchini M (2008) Pathogenesis of venous thromboembolism: when the cup runneth over. Semin Thromb Hemost 34:747–761. doi: 10.1055/s-0029-1145257 PubMedCrossRefGoogle Scholar
  3. 3.
    Lippi G, Franchini M, Montagnana M, Guidi GC (2007) Genomics and proteomics in venous thromboembolism: building a bridge toward a rational personalized medicine framework. Semin Thromb Hemost 33:759–770. doi: 10.1055/s-2007-1000366 PubMedCrossRefGoogle Scholar
  4. 4.
    Bonner L, Coker E, Wood L (2008) Preventing venous thromboembolism through risk assessment approaches. Br J Nurs 17:778–782PubMedGoogle Scholar
  5. 5.
    Heit JA (2006) The epidemiology of venous thromboembolism in the community: implications for prevention and management. J Thromb Thrombolysis 21:23–29. doi: 10.1007/s11239-006-5572-y PubMedCrossRefGoogle Scholar
  6. 6.
    White RH (2003) The epidemiology of venous thromboembolism. Circulation 107(23 Suppl 1):I4–I8. doi: 10.1161/01.CIR.0000078468.11849.66 PubMedGoogle Scholar
  7. 7.
    Itakura H (2005) Racial disparities in risk factors for thrombosis. Curr Opin Hematol 12:364–369. doi: 10.1097/01.moh.0000167746.26145.53 PubMedCrossRefGoogle Scholar
  8. 8.
    Klatsky AL, Baer D (2004) What protects Asians from venous thromboembolism? Am J Med 116:493–495. doi: 10.1016/j.amjmed.2004.01.005 PubMedCrossRefGoogle Scholar
  9. 9.
    White RH, Zhou H, Romano PS (1998) Incidence of idiopathic deep venous thrombosis and secondary thromboembolism among ethnic groups in California. Ann Intern Med 128:737–740PubMedGoogle Scholar
  10. 10.
    White RH, Zhou H, Murin S, Harvey DE (2005) Effect of ethnicity and gender on the incidence of venous thromboembolism in a diverse population in California in 1996. Thromb Haemost 93:298–305PubMedGoogle Scholar
  11. 11.
    Keenan CR, White RH (2007) The effects of race/ethnicity and sex on the risk of venous thromboembolism. Curr Opin Pulm Med 13:377–383PubMedGoogle Scholar
  12. 12.
    Lippi G, Franchini M, Favaloro EJ (2009) Pharmacogenetics of vitamin K antagonists: useful or hype? Clin Chem Lab Med (in press)Google Scholar
  13. 13.
    Cheuk BL, Cheung GC, Cheng SW (2004) Epidemiology of venous thromboembolism in a Chinese population. Br J Surg 91:424–428. doi: 10.1002/bjs.4454 PubMedCrossRefGoogle Scholar
  14. 14.
    Kishimoto M, Lim HY, Tokuda Y et al (2005) Prevalence of venous thromboembolism at a teaching hospital in Okinawa, Japan. Thromb Haemost 93:876–879PubMedGoogle Scholar
  15. 15.
    Dhillon KS, Askander A, Doraisamy S (1996) Postoperative deep-vein thrombosis in Asian patients is not a rarity. J Bone Joint Surg Br 78:427–430PubMedGoogle Scholar
  16. 16.
    Mok CK, Hoaglund FT, Rogoff SM et al (1979) The incidence of deep vein thrombosis in Hong Kong Chinese after hip surgery for fracture of the proximal femur. Br J Surg 66:640–642. doi: 10.1002/bjs.1800660914 PubMedCrossRefGoogle Scholar
  17. 17.
    Jun ZJ, Ping T, Lei Y, Li L, Ming SY, Jing W (2006) Prevalence of factor V Leiden and prothrombin G20210A mutations in Chinese patients with deep venous thrombosis and pulmonary embolism. Clin Lab Haematol 28:111–116. doi: 10.1111/j.1365-2257.2006.00757.x PubMedCrossRefGoogle Scholar
  18. 18.
    Fujimura H, Kambayash J, Monden M et al (1995) Coagulation factor V Leiden mutation may have a racial background. Thromb Haemost 74:1381–1382PubMedGoogle Scholar
  19. 19.
    Shen MC, Lin JS, Tsay W (1997) High prevalence of antithrombin III, protein C and protein S deficiency, but no factor V Leiden mutation in venous thrombophilic Chinese patients in Taiwan. Thromb Res 87:377–385. doi: 10.1016/S0049-3848(97)00141-2 PubMedCrossRefGoogle Scholar
  20. 20.
    Angchaisuksiri P, Atichartakarn V, Aryurachai K, Archararit N, Rachakom B, Atamasirikul K, Tiraganjana A (2007) Risk factors of venous thromboembolism in thai patients. Int J Hematol 86:397–402. doi: 10.1007/BF02983995 PubMedCrossRefGoogle Scholar
  21. 21.
    Kim TM, Kim JS, Han SW, et al. (2008) Clinical predictors of recurrent venous thromboembolism: a single institute experience in Korea. Thromb Res 123:436–443PubMedCrossRefGoogle Scholar
  22. 22.
    Bertina RM, Koeleman BP, Koster T et al (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369:64–67. doi: 10.1038/369064a0 PubMedCrossRefGoogle Scholar
  23. 23.
    Biswas A, Bajaj J, Ranjan R et al (2008) Factor V Leiden: is it the chief contributor to activated protein C resistance in Asian-Indian patients with deep vein thrombosis? Clin Chim Acta 392:21–24. doi: 10.1016/j.cca.2008.02.018 PubMedCrossRefGoogle Scholar
  24. 24.
    Chuansumrit A, Jarutwachirakul W, Sasanakul W, Rurgkhum S, Kadegasem P, Kitpoka P, Sirachainan N (2004) Absence of factor V arg306–thr and low factor V arg306->gly mutation prevalence in Thai blood donors. Southeast Asian J Trop Med Public Health 35:450–452PubMedGoogle Scholar
  25. 25.
    Tanaka K, Davie EW, Ikeda Y, Iwanaga S, Saito H, Sueishi K (2008) Clinical role of protein S deficiency in Asian population. In: Tanaka K, Davie EW (eds) Recent advances in thrombosis and hemostasis. Springer, USA, pp 597–613CrossRefGoogle Scholar
  26. 26.
    Shen MC, Lin JS, Tsay W (2000) Protein C and protein S deficiencies are the most important risk factors associated with thrombosis in Chinese venous thrombophilic patients in Taiwan. Thromb Res 99:447–452. doi: 10.1016/S0049-3848(00)00265-6 PubMedCrossRefGoogle Scholar
  27. 27.
    Akkawat B, Rojnuckarin P (2005) Protein S deficiency is common in a healthy Thai population. J Med Assoc Thai 88(Suppl 4):S249–S254PubMedGoogle Scholar
  28. 28.
    Ko L, Hsu LA, Hsu TS et al (2006) Functional polymorphisms of FGA, encoding alpha fibrinogen, are associated with susceptibility to venous thromboembolism in a Taiwanese population. Hum Genet 119:84–91. doi: 10.1007/s00439-005-0102-0 PubMedCrossRefGoogle Scholar
  29. 29.
    Kimura R, Honda S, Kawasaki T et al (2006) Protein S-K196E mutation as a genetic risk factor for deep vein thrombosis in Japanese patients. Blood 107:1737–1738. doi: 10.1182/blood-2005-09-3892 PubMedCrossRefGoogle Scholar
  30. 30.
    Kinoshita S, Iida H, Inoue S et al (2005) Protein S and protein C gene mutations in Japanese deep vein thrombosis patients. Clin Biochem 38:908–915. doi: 10.1016/j.clinbiochem.2005.05.006 PubMedCrossRefGoogle Scholar
  31. 31.
    Miyata T, Sato Y, Ishikawa J, et al. (2008) Prevalence of genetic mutations in protein S, protein C and antithrombin genes in Japanese patients with deep vein thrombosis. Thromb Res 124:14–18PubMedCrossRefGoogle Scholar
  32. 32.
    Mokdad AH, Ford ES, Bowman BA et al (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289:76–79. doi: 10.1001/jama.289.1.76 PubMedCrossRefGoogle Scholar
  33. 33.
    Mok CC, Tang SS, To CH, Petri M (2005) Incidence and risk factors of thromboembolism in systemic lupus erythematosus: a comparison of three ethnic groups. Arthritis Rheum 52:2774–2782. doi: 10.1002/art.21224 PubMedCrossRefGoogle Scholar
  34. 34.
    Uthman I, Khamashta M (2005) Ethnic and geographical variation in antiphospholipid (Hughes) syndrome. Ann Rheum Dis 64:1671–1676. doi: 10.1136/ard.2005.038448 PubMedCrossRefGoogle Scholar
  35. 35.
    Ferdinand KC (2008) Cardiovascular disease in blacks: can we stop the clock? J Clin Hypertens (Greenwich) 10:382–389. doi: 10.1111/j.1751-7176.2008.07918.x CrossRefGoogle Scholar
  36. 36.
    Patel RK, Ford E, Thumpston J et al (2003) Risk factors for venous thrombosis in the black population. The epidemiology of venous thromboembolism in Caucasians and African-Americans: the GATE Study. Thromb Haemost 90:835–888PubMedGoogle Scholar
  37. 37.
    Miller CH, Dilley A, Richardson L et al (2001) Population differences in von Willebrand factor levels affect the diagnosis of von Willebrands disease in African-American women. Am J Hematol 67:125–129. doi: 10.1002/ajh.1090 PubMedCrossRefGoogle Scholar
  38. 38.
    O’Donnell J, Laffan MA (2001) The relationship between ABO histo-blood group, factor VIII and von Willebrand factor. Transfus Med 11:343–351. doi: 10.1046/j.1365-3148.2001.00315.x PubMedCrossRefGoogle Scholar
  39. 39.
    Cox Gill JC, Endres-Brooks J, Bauer PJ et al (1987) The effect of ABO blood group in the diagnosis of von Willebrand disease. Blood 69:1691–1695Google Scholar
  40. 40.
    Mwangi J (1999) Blood group distribution in an urban population of patient targeted blood donors. East Afr Med J 76:615–618PubMedGoogle Scholar
  41. 41.
    James A (2003) Allelic frequencies of thrombophilic polymorphisms among African-Americans. J Thromb Haemost 1(suppl):P0946Google Scholar
  42. 42.
    Rasmussen-Torvik LJ, Cushman M, Tsai MY, Zhang Y, Heckbert SR, Rosamond WD, Folsom AR (2007) The association of alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism in the LITE study. Thromb Res 121:1–7. doi: 10.1016/j.thromres.2007.02.008 PubMedCrossRefGoogle Scholar
  43. 43.
    Carter AM, Catto AJ, Kohler HP, Ariens RA, Strickland MH, Grant PJ (2000) Alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism. Blood 96:1177–1179PubMedGoogle Scholar
  44. 44.
    Hooper WC, Lally C, Austin H et al (1999) The relationship between polymorphisms in the endothelial cell nitric oxide synthase gene and the platelet GPIIIa gene with myocardial infarction and venous thromboembolism in African Americans. Chest 116:880–886. doi: 10.1378/chest.116.4.880 PubMedCrossRefGoogle Scholar
  45. 45.
    Dilley A, Austin H, Hooper WC et al (1998) Prevalence of the prothrombin 20210 G-to-A variant in blacks: infants, patients with venous thrombosis, patients with myocardial infarction, and control subjects. J Lab Clin Med 132:452–455. doi: 10.1016/S0022-2143(98)90121-4 PubMedCrossRefGoogle Scholar
  46. 46.
    Rahimy MC, Krishnamoorthy R, Ahouignan G, Laffan M, Vulliamy T (1998) The 20210A allele of prothrombin is not found among sickle cell disease patients from West Africa. Thromb Haemost 79:444PubMedGoogle Scholar
  47. 47.
    Hooper WC, Roberts S, Dowling N, Austin H, Lally C, Whitsett C (2006) The prevalence of the prothrombin gene variant C20209T in African-Americans and Caucasians and lack of association with venous thromboembolism. Thromb Res 118:767–768. doi: 10.1016/j.thromres.2005.12.001 PubMedCrossRefGoogle Scholar
  48. 48.
    Dowling NF, Austin H, Dilley A, Whitsett C, Evatt BL, Hooper WC (2003) The epidemiology of venous thromboembolism in Caucasians and African-Americans: the GATE study. J Thromb Haemost 1:80–87. doi: 10.1046/j.1538-7836.2003.00031.x PubMedCrossRefGoogle Scholar
  49. 49.
    Warshawsky I, Hren C, Sercia L et al (2002) Detection of a novel point mutation of the prothrombin gene at position 20209. Diagn Mol Pathol 11:152–156. doi: 10.1097/00019606-200209000-00005 PubMedCrossRefGoogle Scholar
  50. 50.
    Kearon C (2001) Epidemiology of venous thromboembolism. Semin Vasc Med 1:7–26. doi: 10.1055/s-2001-14668 PubMedCrossRefGoogle Scholar
  51. 51.
    Rees DC, Cox M, Clegg JB (1995) World distribution of factor V Leiden. Lancet 346:1133–1134. doi: 10.1016/S0140-6736(95)91803-5 PubMedCrossRefGoogle Scholar
  52. 52.
    Svensson PJ, Zoller B, Mattiasson I, Dahlback B (1997) The factor VR506Q mutation causing APC resistance is highly prevalent amongst unselected outpatients with clinically suspected deep venous thrombosis. J Intern Med 241:379–385. doi: 10.1046/j.1365-2796.1997.124140000.x PubMedCrossRefGoogle Scholar
  53. 53.
    Tosetto A, Missiaglia E, Gatto E, Rodeghiero F (1997) The VITA project: phenotypic resistance to activated protein C and FV Leiden mutation in the general population. Vicenza thrombophilia and atherosclerosis. Thromb Haemost 78:859–863PubMedGoogle Scholar
  54. 54.
    Rosendaal FR, Koster T, Vandenbroucke JP, Reitsma PH (1995) High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 85:1504–1508PubMedGoogle Scholar
  55. 55.
    Mikovic D, Rakicevic LJ, Kovac M, Radojkovic D (2000) Prevalence of factor V Leiden mutation in Yugoslav thrombophilic patients and its relationship to the laboratory diagnosis of APC resistance. Thromb Haemost 84:723–724PubMedGoogle Scholar
  56. 56.
    Djordjevic V, Rakicevic LJ, Mikovic D et al (2004) Prevalence of factor V Leiden, factor V Cambridge, factor II G20210A and methylenetetrahydrofolate reductase C677T mutations in healthy and thrombophilic Serbian populations. Acta Haematol 112:227–229. doi: 10.1159/000081280 PubMedCrossRefGoogle Scholar
  57. 57.
    Pecheniuk NM, Marsh NA, Walsh TP, Dale JL (1997) Use of first nucleotide change technology to determine the frequency of factor V Leiden in a population of Australian blood donors. Blood Coagul Fibrinolysis 8:491–495. doi: 10.1097/00001721-199711000-00002 PubMedCrossRefGoogle Scholar
  58. 58.
    Dzimiri N, Meyer B (1996) World distribution of factor V Leiden. Lancet 347:481–482. doi: 10.1016/S0140-6736(96)90064-1 PubMedCrossRefGoogle Scholar
  59. 59.
    Poort RS, Rosendaal FR, Reitsma PH, Bertina RM (1996) A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88:3698–3703PubMedGoogle Scholar
  60. 60.
    Leroyer C, Mercier B, Oger E et al (1998) Prevalence of 20210A allele of the prothrombin gene in venous thromboembolism patients. Thromb Haemost 80:49–51PubMedGoogle Scholar
  61. 61.
    Rosendaal FR, Doggen CJ, Zivelin A et al (1998) Geographic distribution of the 20210G to A prothrombin variant. Thromb Haemost 79:706–708PubMedGoogle Scholar
  62. 62.
    Zalavras CG, Giotopoulou S, Dokou E et al (2003) Prevalence of the G20210A prothrombin gene mutation in Northwestern Greece and association with venous thromboembolism. Int Angiol 22:55–57PubMedGoogle Scholar
  63. 63.
    Collaboration HomocysteineLoweringTrialists’ (1998) Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomized trials. BMJ 316:894–898Google Scholar
  64. 64.
    Tucker KL, Olson B, Bakun P, Dallal GE, Selhub J, Rosenberg IH (2004) Breakfast cereal fortified with folic acid, vitamin B-6, and vitamin B-12 increases vitamin concentrations and reduces homocysteine concentrations: a randomized trial. Am J Clin Nutr 79:805–811PubMedGoogle Scholar
  65. 65.
    Jacques PF, Selhub J, Bostom AG, Wilson PW, Rosenberg IH (1999) The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 340:1449–1454. doi: 10.1056/NEJM199905133401901 PubMedCrossRefGoogle Scholar
  66. 66.
    Mezzano D, Leighton F, Martinez C et al (2001) Complementary effects of Mediterranean diet and moderate red wine intake on haemostatic cardiovascular risk factors. Eur J Clin Nutr 55:444–451. doi: 10.1038/sj.ejcn.1601202 PubMedCrossRefGoogle Scholar
  67. 67.
    Steffen LM, Folsom AR, Cushman M, Jacobs DR Jr, Rosamond WD (2007) Greater fish, fruit, and vegetable intakes are related to lower incidence of venous thromboembolism: the longitudinal investigation of thromboembolism etiology. Circulation 115:188–195. doi: 10.1161/CIRCULATIONAHA.106.641688 PubMedCrossRefGoogle Scholar
  68. 68.
    Bergqvist D (2005) Geographical aspects of postoperative venous thromboembolism. J Thromb Haemost 3:26–27. doi: 10.1111/j.1538-7836.2004.01098.x PubMedCrossRefGoogle Scholar
  69. 69.
    Ho CH, Chwang LC, Hwang BH (1995) The influence of high fat diet on the fibrinolytic activity. Thromb Res 77:201–208. doi: 10.1016/0049-3848(95)91607-M PubMedCrossRefGoogle Scholar
  70. 70.
    Hammerschmidt DE (1980) Szechwan purpura. N Engl J Med 302:1191–1193PubMedGoogle Scholar
  71. 71.
    Okuyama T, Shibata S, Hoson M (1986) Effect of oriental plant drugs on human platelet aggregation: III. Effect of Chinese drug “Xiebai” on human platelet aggregation. Planta Med 3:171–175. doi: 10.1055/s-2007-969113 PubMedCrossRefGoogle Scholar
  72. 72.
    Pomp ER, Rosendaal FR, Doggen CJ (2008) Alcohol consumption is associated with a decreased risk of venous thrombosis. Thromb Haemost 99:59–63PubMedGoogle Scholar
  73. 73.
    Jick H, Derby LE, Wald Myers M, Vasilakis C, Newton KM (1996) Risk of hospital admission for idiopathic venous thromboembolism among users of postmenopausal oestrogens. Lancet 348:981–983. doi: 10.1016/S0140-6736(96)07114-0 PubMedCrossRefGoogle Scholar
  74. 74.
    Goldhaber SZ, Grodstein F, Stampfer MJ et al (1997) A prospective study of risk factors for pulmonary embolism in women. JAMA 277:642–645. doi: 10.1001/jama.277.8.642 PubMedCrossRefGoogle Scholar
  75. 75.
    Eichinger S, Hron G, Bialonczyk C et al (2008) Overweight, obesity, and the risk of recurrent venous thromboembolism. Arch Intern Med 168:1678–1683. doi: 10.1001/archinte.168.15.1678 PubMedCrossRefGoogle Scholar
  76. 76.
    Smeeth L, Cook C, Thomas S, Hall AJ, Hubbard R, Vallance P (2006) Risk of deep vein thrombosis and pulmonary embolism after acute infection in a community setting. Lancet 367:1075–1079. doi: 10.1016/S0140-6736(06)68474-2 PubMedCrossRefGoogle Scholar
  77. 77.
    Samama MM (2000) An epidemiologic study of risk factors for deep vein thrombosis in medical outpatients: the Sirius study. Arch Intern Med 160:3415–3420. doi: 10.1001/archinte.160.22.3415 PubMedCrossRefGoogle Scholar
  78. 78.
    Alikhan R, Cohen AT, Combe S et al (2004) Risk factors for venous thromboembolism in hospitalized patients with acute medical illness: analysis of the MEDENOX study. Arch Intern Med 164:963–968. doi: 10.1001/archinte.164.9.963 PubMedCrossRefGoogle Scholar
  79. 79.
    Alikhan R, Spyropoulos AC (2008) Epidemiology of venous thromboembolism in cardiorespiratory and infectious disease. Am J Med 121:935–942. doi: 10.1016/j.amjmed.2008.05.045 PubMedCrossRefGoogle Scholar
  80. 80.
    Jansen JM, Lijfering WM, Sprenger HG, van der Meer J, van Pampus MG (2008) Venous thromboembolism in HIV-positive women during puerperium: a case series. Blood Coagul Fibrinolysis 19:95–97. doi: 10.1097/MBC.0b013e3282f38c23 PubMedCrossRefGoogle Scholar
  81. 81.
    Austin H, Key NS, Benson JM, Lally C, Dowling NF, Whitsett C, Hooper WC (2007) Sickle cell trait and the risk of venous thromboembolism among blacks. Blood 110:908–912. doi: 10.1182/blood-2006-11-057604 PubMedCrossRefGoogle Scholar
  82. 82.
    Baccarelli A, Zanobetti A, Martinelli I et al (2007) Effects of exposure to air pollution on blood coagulation. J Thromb Haemost 5:252–260. doi: 10.1111/j.1538-7836.2007.02300.x PubMedCrossRefGoogle Scholar
  83. 83.
    Baccarelli A, Martinelli I, Zanobetti A et al (2008) Exposure to particulate air pollution and risk of deep vein thrombosis. Arch Intern Med 168:920–927. doi: 10.1001/archinte.168.9.920 PubMedCrossRefGoogle Scholar
  84. 84.
    Dalen JE (2008) Particulate air pollution exposure and risk of venous thromboembolism. Arch Intern Med 168:2497. doi: 10.1001/archinternmed.2008.531 PubMedCrossRefGoogle Scholar
  85. 85.
    Lippi G, Favaloro EJ, Franchini M, Guidi GC (2008) Air pollution and coagulation testing: a new source of biological variability? Thromb Res 123:50–54. doi: 10.1016/j.thromres.2008.04.010 PubMedCrossRefGoogle Scholar
  86. 86.
    Baccarelli A, Zanobetti A, Martinelli I et al (2007) Air pollution, smoking, and plasma homocysteine. Environ Health Perspect 115:176–181PubMedCrossRefGoogle Scholar
  87. 87.
    Keenan CR, White RH (2005) Age as a risk factor for venous thromboembolism after major surgery. Curr Opin Pulm Med 11:398–402. doi: 10.1097/01.mcp.0000174246.15386.69 PubMedCrossRefGoogle Scholar
  88. 88.
    Kniffin WD Jr, Baron JA, Barrett J, Birkmeyer JD, Anderson FA Jr (1994) The epidemiology of diagnosed pulmonary embolism and deep venous thrombosis in the elderly. Arch Intern Med 154:861–866. doi: 10.1001/archinte.154.8.861 PubMedCrossRefGoogle Scholar
  89. 89.
    Nowak-Göttl U, Kosch A (2004) Factor VIII, D-dimer, and thromboembolism in children. N Engl J Med 351:1051–1053. doi: 10.1056/NEJMp048150 PubMedCrossRefGoogle Scholar
  90. 90.
    Kosch A, Koch HG, Heinecke A, Kurnik K, Heller C, Nowak-Göttl U, Childhood Thrombophilia Study Group (2004) Increased fasting total homocysteine plasma levels as a risk factor for thromboembolism in children. Thromb Haemost 91:308–314PubMedGoogle Scholar
  91. 91.
    Bailey AL, Scantlebury DC, Smyth SS (2009) Thrombosis and antithrombotic therapy in women. Arterioscler Thromb Vasc Biol 29:284–288. doi: 10.1161/ATVBAHA.108.179788 PubMedCrossRefGoogle Scholar
  92. 92.
    Zuern CS, Lindemann S, Gawaz M (2009) Platelet Function and Response to Aspirin: Gender-specific features and implications for female thrombotic risk and management. Semin Thromb Hemost, 35, (in press)Google Scholar
  93. 93.
    Anderson FA Jr, Wheeler HB, Goldberg RJ et al (1991) A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism: the Worcester DVT study. Arch Intern Med 151:933–938. doi: 10.1001/archinte.151.5.933 PubMedCrossRefGoogle Scholar
  94. 94.
    Nordstrom M, Lindblad B, Bergqvist D, Kjellstrom T (1992) A prospective study of the incidence of deep-vein thrombosis within a defined urban population. J Intern Med 232:155–160PubMedCrossRefGoogle Scholar
  95. 95.
    Proctor MC, Wainess RM, Henke PK, Upchurch GR, Wakefield TW (2004) Venous thromboembolism: regional differences in the nationwide inpatient sample, 1993 to 2000. Vascular 12:374–380. doi: 10.2310/6670.2004.00037 PubMedCrossRefGoogle Scholar
  96. 96.
    Oger E (2000) Incidence of venous thromboembolism: a community-based study in western France. EPI-GETBP study group. Groupe d’Etude de la Thrombose de Bretagne Occidentale. Thromb Haemost 83:657–660PubMedGoogle Scholar
  97. 97.
    Silverstein MD, Heit JA, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ 3rd (1998) Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med 158:585–593. doi: 10.1001/archinte.158.6.585 PubMedCrossRefGoogle Scholar
  98. 98.
    Romero A, Alonso C, Rincón M et al (2005) Risk of venous thromboembolic disease in women a qualitative systematic review. Eur J Obstet Gynecol Reprod Biol 121:8–17. doi: 10.1016/j.ejogrb.2004.11.023 PubMedCrossRefGoogle Scholar
  99. 99.
    Moores L, Bilello KL, Murin S (2004) Sex and gender issues and venous thromboembolism. Clin Chest Med 25:281–297. doi: 10.1016/j.ccm.2004.01.013 PubMedCrossRefGoogle Scholar
  100. 100.
    Pomp ER, Lenselink AM, Rosendaal FR, Doggen CJ (2008) Pregnancy, the postpartum period and prothrombotic defects: risk of venous thrombosis in the MEGA study. J Thromb Haemost 6:632–637. doi: 10.1111/j.1538-7836.2008.02921.x PubMedCrossRefGoogle Scholar
  101. 101.
    Cushman M, Kuller LH, Prentice R, Women’sHealth Initiative Investigators et al (2004) Estrogen plus progestin and risk of venous thrombosis. JAMA 292:1573–1580. doi: 10.1001/jama.292.13.1573 PubMedCrossRefGoogle Scholar
  102. 102.
    Battaglioli T, Martinelli I (2007) Hormone therapy and thromboembolic disease. Curr Opin Hematol 14:488–493PubMedGoogle Scholar
  103. 103.
    Kyrle P, Minar E, Bialonczyk C, Hirschl M, Weltermann A, Eichinger S (2004) The risk of recurrent venous thromboembolism in men and women. N Engl J Med 350:2558–2563. doi: 10.1056/NEJMoa032959 PubMedCrossRefGoogle Scholar
  104. 104.
    Baglin T, Luddington R, Brown K, Baglin C (2004) High risk of recurrent venous thromboembolism in men. J Thromb Haemost 2:2152–2155. doi: 10.1111/j.1538-7836.2004.01050.x PubMedCrossRefGoogle Scholar
  105. 105.
    McRae S, Tran H, Schulman S, Ginsberg J, Kearon C (2006) Effect of patient’s sex on risk of recurrent venous thromboembolism: a meta-analysis. Lancet 368:371–378. doi: 10.1016/S0140-6736(06)69110-1 PubMedCrossRefGoogle Scholar
  106. 106.
    White RH, Dager WE, Zhou H, Murin S (2006) Racial and gender differences in the incidence of recurrent venous thromboembolism. Thromb Haemost 96:267–273PubMedGoogle Scholar
  107. 107.
    Guidi GC, Lippi G (2009) Will “personalized medicine” need personalized laboratory approach? Clin Chim Acta 400:25–29. doi: 10.1016/j.cca.2008.09.029 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Martina Montagnana
    • 1
  • Emmanuel J. Favaloro
    • 2
  • Massimo Franchini
    • 3
  • Gian Cesare Guidi
    • 1
  • Giuseppe Lippi
    • 1
  1. 1.Sezione di Chimica Clinica, Dipartimento di Scienze Morfologico-BiomedicheUniversità di VeronaVeronaItaly
  2. 2.Department of HaematologyInstitute of Clinical Pathology and Medical Research (ICPMR), Westmead HospitalWestmeadAustralia
  3. 3.Servizio di Immunoematologia e Trasfusione–Azienda Ospedaliero-Universitaria di VeronaVeronaItaly

Personalised recommendations