Journal of Thrombosis and Thrombolysis

, Volume 29, Issue 3, pp 289–295 | Cite as

Mild hypothermia markedly reduces ischemia related coronary t-PA release

  • Jesper van der Pals
  • Matthias Götberg
  • Göran K. Olivecrona
  • Helen Brogren
  • Sverker Jern
  • David ErlingeEmail author


In experimentally induced myocardial ischemia, mild hypothermia (33–35°C) has a robust cardioprotective effect. Tissue plasminogen activator (t-PA) is a profibrinolytic enzyme that is released from the vascular endothelial cells in response to ischemia and other injurious stimuli. t-PA has also been found to have proinflammatory properties that could contribute to reperfusion injury. We postulated that hypothermia could attenuate t-PA release in the setting of myocardial ischemia. Sixteen 25–30 kg pigs were anesthetized and a temperature of 37°C was established using an intravascular cooling/warming catheter. The pigs were then randomized to hypothermia (34°C) or control (37°C). A doppler flow wire was placed distal to a percutaneous coronary intervention balloon positioned immediately distal to the first diagonal branch of the left anterior descending artery (LAD). The LAD was then occluded for 10 min in all pigs. Coronary blood flow and t-PA was measured before, during and after ischemia/reperfusion. t-PA was measured in peripheral arterial blood and locally in the venous blood from the coronary sinus. Net t-PA release over the coronary bed was calculated by subtraction of arterial values from coronary sinus values. An estimate of differences in total t-PA release was calculated by multiplying net t-PA release with the relative increase in flow compared to baseline, measured in relative units consisting of ((ng/ml − ng/ml) × (cm/s/cm/s)). There was no observed difference in t-PA levels in peripheral arterial samples. As shown previously, net t-PA release increased during reperfusion. Hypothermia significantly inhibited the increase in t-PA release during reperfusion (peak value 9.44 ± 4.34 ng/ml vs. 0.79 ± 0.45 ng/ml, P = 0.02). The effect was even more prominent when an estimation of total t-PA release was performed with mean peak value in the control group 26-fold higher than in the hypothermia group (69.74 ± 33.86 units vs. 2.62 ± 1.10 units, P = 0.01). Mild hypothermia markedly reduces ischemia related coronary tissue plasminogen activator release. The reduction of t-PA release may contribute to the cardioprotective effect of hypothermia.


t-PA Ischemia Hypothermia 



The study has been supported by the Swedish Scientific Research Council, the Swedish Heart and Lung Foundation, the Vascular Wall program (Lund University Faculty of Medicine) and Hains Foundation. David Erlinge is a holder of the Lars Werkö distinguished research fellowship from the Swedish Heart and Lung Foundation. We would like to thank Boston Scientific Cardiology, Nordic AB (Helsingborg, Sweden) for their generosity in unrestricted donations of catheters and guide wires for use in animal research and Innercool therapies Inc., San Diego, CA, USA for unrestricted loan of the Celsius Control™ cooling consol.


  1. 1.
    Dae MW, Gao DW, Sessler DI et al (2002) Effect of endovascular cooling on myocardial temperature, infarct size, and cardiac output in human-sized pigs. Am J Physiol Heart Circ Physiol 282:H1584–H1591PubMedGoogle Scholar
  2. 2.
    Duncker DJ, Klassen CL, Ishibashi Y et al (1996) Effect of temperature on myocardial infarction in swine. Am J Physiol 270:H1189–H1199PubMedGoogle Scholar
  3. 3.
    Hale SL, Dave RH, Kloner RA (1997) Regional hypothermia reduces myocardial necrosis even when instituted after the onset of ischemia. Basic Res Cardiol 92:351–357PubMedGoogle Scholar
  4. 4.
    Gotberg M, Olivecrona GK, Engblom H et al (2008) Rapid short-duration hypothermia with cold saline and endovascular cooling before reperfusion reduces microvascular obstruction and myocardial infarct size. BMC Cardiovasc Disord 8:7. doi: 10.1186/1471-2261-8-7 CrossRefPubMedGoogle Scholar
  5. 5.
    Rapid Intravascular Cooling in Myocardial Infarction as Adjunctive to Percutaneous Coronary Intervention (RAPID MI-ICE).
  6. 6.
    Can Hypothermia be Incorporated Into Primary Angioplasty for Heart Attack? (CHIPAHA).
  7. 7.
    The Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556. doi: 10.1056/NEJMoa012689 Google Scholar
  8. 8.
    2005 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 7.5: postresuscitation support. Circulation 112(Suppl I):IV-84–IV-88, 2005. doi: 10.1161/CIRCULATIONAHA.105.166560
  9. 9.
    van Hinsbergh VW, Binnema D, Scheffer MA et al (1987) Production of plasminogen activators and inhibitor by serially propagated endothelial cells from adult human blood vessels. Arteriosclerosis 7:389–400PubMedGoogle Scholar
  10. 10.
    Wang Y, Hand AR, Wang YH et al (1998) Functional and morphologic evidence of the presence of tissue-plasminogen activator in vascular nerves: implications for a neurologic control of vessel wall fibrinolysis and rigidity. J Neurosci Res 53:443–453. doi: 10.1002/(SICI)1097-4547(19980815)53:4<443::AID-JNR6>3.0.CO;2-6 CrossRefPubMedGoogle Scholar
  11. 11.
    Bjorkman JA, Jern S, Jern C (2003) Cardiac sympathetic nerve stimulation triggers coronary t-PA release. Arterioscler Thromb Vasc Biol 23:1091–1097. doi: 10.1161/01.ATV.0000072966.23250.1E CrossRefPubMedGoogle Scholar
  12. 12.
    Hrafnkelsdottir T, Erlinge D, Jern S (2001) Extracellular nucleotides ATP and UTP induce a marked acute release of tissue-type plasminogen activator in vivo in man. Thromb Haemost 85:875–881PubMedGoogle Scholar
  13. 13.
    Hrafnkelsdottir T, Gudnason T, Wall U et al (2004) Regulation of local availability of active tissue-type plasminogen activator in vivo in man. J Thromb Haemost 2:1960–1968. doi: 10.1111/j.1538-7836.2004.00948.x CrossRefPubMedGoogle Scholar
  14. 14.
    Osterlund B, Andersson B, Haggmark S et al (2002) Myocardial ischemia induces coronary t-PA release in the pig. Acta Anaesthesiol Scand 46:271–278. doi: 10.1034/j.1399-6576.2002.t01-1-460308.x CrossRefPubMedGoogle Scholar
  15. 15.
    Osterlund B, Jern C, Seeman-Lodding H et al (2003) Intracoronary beta2 receptor activation induces dynamic local t-PA release in the pig. Thromb Haemost 90:796–802PubMedGoogle Scholar
  16. 16.
    Smalley DM, Fitzgerald JE, O’Rourke J (1993) Adenosine diphosphate stimulates the endothelial release of tissue-type plasminogen activator but not von Willebrand factor from isolated-perfused rat hind limbs. Thromb Haemost 70:1043–1046PubMedGoogle Scholar
  17. 17.
    Tranquille N, Emeis JJ (1990) The simultaneous acute release of tissue-type plasminogen activator and von Willebrand factor in the perfused rat hindleg region. Thromb Haemost 63:454–458PubMedGoogle Scholar
  18. 18.
    Witherow FN, Dawson P, Ludlam CA et al (2002) Marked bradykinin-induced tissue plasminogen activator release in patients with heart failure maintained on long-term angiotensin-converting enzyme inhibitor therapy. J Am Coll Cardiol 40:961–966. doi: 10.1016/S0735-1097(02)02061-2 CrossRefPubMedGoogle Scholar
  19. 19.
    Ambrosio G, Tritto II (1997) Lethal myocardial reperfusion injury: does it exist, should we treat it? J Thromb Thrombolysis 4:69–70. doi: 10.1023/A:1017554619252 CrossRefPubMedGoogle Scholar
  20. 20.
    Kloner RA (1993) Does reperfusion injury exist in humans? J Am Coll Cardiol 21:537–545PubMedCrossRefGoogle Scholar
  21. 21.
    Opie LH (1989) Reperfusion injury and its pharmacologic modification. Circulation 80:1049–1062PubMedGoogle Scholar
  22. 22.
    Hearse DJ, Bolli R (1992) Reperfusion induced injury: manifestations, mechanisms, and clinical relevance. Cardiovasc Res 26:101–108. doi: 10.1093/cvr/26.2.101 CrossRefPubMedGoogle Scholar
  23. 23.
    Grover GJ, Dzwonczyk S, Parham CS (1993) The endothelin-1 receptor antagonist BQ-123 reduces infarct size in a canine model of coronary occlusion and reperfusion. Cardiovasc Res 27:1613–1618. doi: 10.1093/cvr/27.9.1613 CrossRefPubMedGoogle Scholar
  24. 24.
    Weisman HF, Bartow T, Leppo MK et al (1990) Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249:146–151. doi: 10.1126/science.2371562 CrossRefPubMedGoogle Scholar
  25. 25.
    Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84:1404–1407. doi: 10.1073/pnas.84.5.1404 CrossRefPubMedGoogle Scholar
  26. 26.
    Jennings RB, Schaper J, Hill ML et al (1985) Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res 56:262–278PubMedGoogle Scholar
  27. 27.
    Strbian D, Karjalainen-Lindsberg ML, Kovanen PT et al (2007) Mast cell stabilization reduces hemorrhage formation and mortality after administration of thrombolytics in experimental ischemic stroke. Circulation 116:411–418. doi: 10.1161/CIRCULATIONAHA.106.655423 CrossRefPubMedGoogle Scholar
  28. 28.
    Hermann DM, Matter CM (2007) Tissue plasminogen activator-induced reperfusion injury after stroke revisited. Circulation 116:363–365. doi: 10.1161/CIRCULATIONAHA.107.712380 CrossRefPubMedGoogle Scholar
  29. 29.
    Olivecrona GK, Gotberg M, Harnek J et al (2007) The ADP receptor P2Y(1) mediates t-PA release in pigs during cardiac ischemia. J Thromb Thrombolysis 24:115–122. doi: 10.1007/s11239-007-0010-3 CrossRefPubMedGoogle Scholar
  30. 30.
    Olivecrona GK, Gotberg M, Harnek J et al (2007) Mild hypothermia reduces cardiac post-ischemic reactive hyperemia. BMC Cardiovasc Disord 7:5. doi: 10.1186/1471-2261-7-5 CrossRefPubMedGoogle Scholar
  31. 31.
    Ohta S, Yukioka T, Wada T et al (1995) Effect of mild hypothermia on the coefficient of oxygen delivery in hypoxemic dogs. J Appl Physiol 78:2095–2099PubMedGoogle Scholar
  32. 32.
    Gerola A, Feinberg H, Katz LN (1959) Myocardial oxygen consumption and coronary blood flow in hypothermia. Am J Physiol 196:719–725PubMedGoogle Scholar
  33. 33.
    Edwards WS, Tuluy S, Reber WE et al (1954) Coronary blood flow and myocardial metabolism in hypothermia. Ann Surg 139:275–281. doi: 10.1097/00000658-195403000-00003 CrossRefPubMedGoogle Scholar
  34. 34.
    Badeer H (1956) Effect of hypothermia on oxygen consumption and energy utilization of heart. Circ Res 4:523–526PubMedGoogle Scholar
  35. 35.
    Milde LN (1992) Clinical use of mild hypothermia for brain protection: a dream revisited. J Neurosurg Anesthesiol 4:211–215. doi: 10.1097/00008506-199207000-00012 CrossRefPubMedGoogle Scholar
  36. 36.
    Xu L, Yenari MA, Steinberg GK et al (2002) Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. J Cereb Blood Flow Metab 22:21–28. doi: 10.1097/00004647-200201000-00003 CrossRefPubMedGoogle Scholar
  37. 37.
    Adachi M, Sohma O, Tsuneishi S et al (2001) Combination effect of systemic hypothermia and caspase inhibitor administration against hypoxic-ischemic brain damage in neonatal rats. Pediatr Res 50:590–595. doi: 10.1203/00006450-200111000-00010 CrossRefPubMedGoogle Scholar
  38. 38.
    Ning XH, Chen SH, Xu CS et al (2002) Hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis. J Appl Physiol 92:2200–2207PubMedGoogle Scholar
  39. 39.
    Polderman KH (2004) Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 1: Indications and evidence. Intensive Care Med 30:556–575. doi: 10.1007/s00134-003-2152-x CrossRefPubMedGoogle Scholar
  40. 40.
    Miki T, Liu GS, Cohen MV et al (1998) Mild hypothermia reduces infarct size in the beating rabbit heart: a practical intervention for acute myocardial infarction? Basic Res Cardiol 93:372–383. doi: 10.1007/s003950050105 CrossRefPubMedGoogle Scholar
  41. 41.
    Hacke W, Donnan G, Fieschi C et al (2004) Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 363:768–774. doi: 10.1016/S0140-6736(04)15692-4 CrossRefPubMedGoogle Scholar
  42. 42.
    The GUSTO investigators (1993) An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 329:673–682. doi: 10.1056/NEJM199309023291001 Google Scholar
  43. 43.
    Cheng T, Petraglia AL, Li Z et al (2006) Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med 12:1278–1285. doi: 10.1038/nm1498 CrossRefPubMedGoogle Scholar
  44. 44.
    Kilic E, Kilic U, Reiter RJ et al (2005) Tissue-plasminogen activator-induced ischemic brain injury is reversed by melatonin: role of iNOS and Akt. J Pineal Res 39:151–155PubMedGoogle Scholar
  45. 45.
    Schaefer U, Machida T, Vorlova S et al (2006) The plasminogen activator system modulates sympathetic nerve function. J Exp Med 203:2191–2200. doi: 10.1084/jem.20060077 CrossRefPubMedGoogle Scholar
  46. 46.
    Lu FC, Melville KI (1951) Effects of noradrenaline on coronary flow and heart contraction, as recorded concurrently in the isolated rabbit heart. J Physiol 113:365–371PubMedGoogle Scholar
  47. 47.
    Schomig A, Richardt G (1990) Cardiac sympathetic activity in myocardial ischemia: release and effects of noradrenaline. Basic Res Cardiol 85(Suppl 1):9–30. doi: 10.1007/BF01907010 PubMedGoogle Scholar
  48. 48.
    Boddicker KA, Zhang Y, Zimmerman MB et al (2005) Hypothermia improves defibrillation success and resuscitation outcomes from ventricular fibrillation. Circulation 111:3195–3201. doi: 10.1161/CIRCULATIONAHA.104.492108 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jesper van der Pals
    • 1
  • Matthias Götberg
    • 1
  • Göran K. Olivecrona
    • 1
  • Helen Brogren
    • 2
  • Sverker Jern
    • 2
  • David Erlinge
    • 1
    Email author
  1. 1.Department of CardiologyLund University HospitalLundSweden
  2. 2.Clinical Experimental Research Laboratory, Institute of MedicineSahlgrenska Academy, University of GothenburgGothenburgSweden

Personalised recommendations