Journal of Thrombosis and Thrombolysis

, Volume 28, Issue 1, pp 50–56 | Cite as

Acute phase proteins activation in subjects with coronary atherosclerosis and micro-vessel coronary circulation impairment

  • Natale Daniele Brunetti
  • Roberto Padalino
  • Luisa De Gennaro
  • Andrea Cuculo
  • Luigi Ziccardi
  • Pier Luigi Pellegrino
  • Matteo Di Biase
Article

Abstract

Aim To investigate possible correlations between acute phase proteins (APPs) activation and coronary flow in subjects with coronary artery disease (CAD) undergoing coronary angiography. Methods Fifty-nine consecutive patients with CAD who underwent coronary angiography were enrolled in the study: blood samples were taken in order to evaluate plasmatic concentrations of C-reactive protein (CRP) and APPs such as alpha-1-anti-trypsin (A1AT), alpha-1-glyco-protein (A1GP) and haptoglobin (HG). Coronary flow on left anterior descending (LAD) was assessed with TIMI frame count (TFC). Patients with TIMI flow 0–1 were excluded from the study. Results Coronary atherosclerosis expressed in terms of number of coronary vessels with severe (>70%) lumen narrowing was related to serum concentrations of all considered APPs (A1GP: r 0.282, P < 0.05; A1AT: r 0.256, P 0.055; HG: r 0.335, P < 0.01). TFC on LAD was related to all considered APPs (A1GP: r 0.24, P 0.06; A1AT: r 0.28, P < 0.05; HG: r 0.43, P < 0.01; log CRP: r 0.57, P < 0.001); correlations remained significant even after correction for age, gender, risk factors, diagnosis and treatment. Among 12 patients who were previously treated with coronary angioplasty, those implanted with a drug eluting stent showed a significantly slower coronary flow on LAD (19.6 ± 2.07 vs. 16.71 ± 2.06, P < 0.05) if compared with those implanted with a bare metal stent. Conclusions An increased inflammatory systemic activation featured by plasmatic concentrations of CRP and APPs might be associated with both coronary atherosclerosis and an impaired coronary micro-circulation.

Keywords

Acute phase proteins Coronary atherosclerosis Coronary micro-circulation dysfunction 

References

  1. 1.
    Brunetti ND, Troccoli R, Correale M, Pellegrino PL, Di Biase M (2006) C-reactive protein in patients with acute coronary syndrome: correlation with diagnosis, myocardial damage, ejection fraction and angiographic findings. Int J Cardiol 109(2):248–256, Epub 2005 Aug 1PubMedCrossRefGoogle Scholar
  2. 2.
    Brunetti ND, Correale M, Pellegrino PL, Cuculo A, Di Biase M (2007) IAcute phase proteins in patients with acute coronary syndrome: correlations with diagnosis, clinical features, and angiographic findings. Eur J Intern Med 18(2):109–117PubMedCrossRefGoogle Scholar
  3. 3.
    Brunetti ND, Munno I, Pellegrino PL, Ruggiero V, Correale M, Cuculo A, De Gennaro L, Campanale G, Mavilio G, Ziccardi L, Di Biase M (2007) Inflammatory cytokines imbalance after coronary angioplasty: links with coronary atherosclerosis. J Interv Cardiol 20:248–257PubMedCrossRefGoogle Scholar
  4. 4.
    Trepels T, Zeiher AM, Fichtlscherer S (2006) The endothelium and inflammation. Endothelium 13(6):423–429, ReviewPubMedCrossRefGoogle Scholar
  5. 5.
    Fichtlscherer S, Breuer S, Heeschen C, Dimmeler S, Zeiher AM (2004) Interleukin-10 serum levels and systemic endothelial vasoreactivity in patients with coronary artery disease. J Am Coll Cardiol 44(1):44–49PubMedCrossRefGoogle Scholar
  6. 6.
    Blum A, Schneider DJ, Sobel BE, Dauerman HL (2004) Endothelial dysfunction and inflammation after percutaneous coronary intervention. Am J Cardiol 94(11):1420–1423PubMedCrossRefGoogle Scholar
  7. 7.
    Fichtlscherer S, Rosenberger G, Walter DH, Breuer S, Dimmeler S, Zeiher AM (2000) Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation 102(9):1000–1006PubMedGoogle Scholar
  8. 8.
    Fichtlscherer S, Zeiher AM (2000) Endothelial dysfunction in acute coronary syndromes: association with elevated C-reactive protein levels. Ann Med 32(8):515–518, ReviewPubMedCrossRefGoogle Scholar
  9. 9.
    Teragawa H, Fukuda Y, Matsuda K, Ueda K, Higashi Y, Oshima T, Yoshizumi M, Chayama K (2004) Relation between C reactive protein concentrations and coronary microvascular endothelial function. Heart 90(7):750–754PubMedCrossRefGoogle Scholar
  10. 10.
    Matsubara T, Ishibashi T, Hori T, Ozaki K, Mezaki T, Tsuchida K, Nasuno A, Kubota K, Tanaka T, Miida T, Aizawa Y, Nishio M (2003) Association between coronary endothelial dysfunction and local inflammation of atherosclerotic coronary arteries. Mol Cell Biochem 249(1–2):67–73PubMedCrossRefGoogle Scholar
  11. 11.
    Turhan H, Saydam GS, Erbay AR, Ayaz S, Yasar AS, Aksoy Y, Basar N, Yetkin E (2006) Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow. Int J Cardiol 108(2):224–30, Epub 2005 Jul 5PubMedCrossRefGoogle Scholar
  12. 12.
    Marroquin OC, Kip KE, Mulukutla SR, Ridker PM, Pepine CJ, Tjandrawan T, Kelsey SF, Mankad S, Rogers WJ, Merz CN, Sopko G, Sharaf BL, Reis SE (2005) Inflammation, endothelial cell activation, and coronary microvascular dysfunction in women with chest pain and no obstructive coronary artery disease. Am Heart J 150(1):109–115PubMedCrossRefGoogle Scholar
  13. 13.
    Vallbracht KB, Schwimmbeck PL, Kuhl U, Rauch U, Seeberg B, Schultheiss HP (2005) Differential aspects of endothelial function of the coronary microcirculation considering myocardial virus persistence, endothelial activation, and myocardial leukocyte infiltrates. Circulation 111(14):1784–1791, Epub 2005 Apr 4PubMedCrossRefGoogle Scholar
  14. 14.
    Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK, Braunwald E (1996) TIMI frame count a quantitative method of assessing coronary artery flow. Circulation 93:879–88PubMedGoogle Scholar
  15. 15.
    Tambe AA, Demany MA, Zimmerman HA, Mascarenhas E (1972) Angina pectoris and slow flow velocity of dye in coronary arteries. A new angiographic finding. Am Heart J 84:66–71PubMedCrossRefGoogle Scholar
  16. 16.
    Mangieri E, Macchiarelli G, Ciavolella M, Barilla F, Avella A, Martinotti A, Dell’Italia LJ, Scibilia G, Motta P, Campa PP (1996) Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Catheter Cardiovasc Diagn 37:375–381CrossRefGoogle Scholar
  17. 17.
    Mosseri M, Yarom R, Gotsman MS, Hasin Y (1986) Histologic evidence for small vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation 74:964–972PubMedGoogle Scholar
  18. 18.
    Epstein SE, Cannon O, Talbot TL (1985) Hemodynamic principles in the control of coronary blood flow. Am J Cardiol 56:4E–10EPubMedCrossRefGoogle Scholar
  19. 19.
    Beltrame JF, Limaye SB, Wuttke RD, Horowitz JD (2003) Coronary hemodynamic and metabolic studies of the coronary slow flow phenomenon. Am Heart J 146:84–90PubMedCrossRefGoogle Scholar
  20. 20.
    Kang SM, Chung N, Kim JY, Koo BK, Choi D, Jang Y, Cho SY (2002) Relation of vasodilator response of the brachial artery to inflammatory markers in patients with coronary artery disease. Echocardiography 19(8):661–667PubMedCrossRefGoogle Scholar
  21. 21.
    Vita JA, Keaney JF Jr, Larson MG, Keyes MJ, Massaro JM, Lipinska I, Lehman BT, Fan S, Osypiuk E, Wilson PW, Vasan RS, Mitchell GF, Benjamin EJ (2004) Brachial artery vasodilator function and systemic inflammation in the Framingham Offspring Study. Circulation 110(23):3604–3609, Epub 2004 Nov 29PubMedCrossRefGoogle Scholar
  22. 22.
    Hingorani AD, Cross J, Kharbanda RK, Mullen MJ, Bhagat K, Taylor M, Donald AE, Palacios M, Griffin GE, Deanfield JE, MacAllister RJ, Vallance P (2000) Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 102(9):994–999PubMedGoogle Scholar
  23. 23.
    Fichtlscherer S, Breuer S, Schachinger V, Dimmeler S, Zeiher AM (2004) C-reactive protein levels determine systemic nitric oxide bioavailability in patients with coronary artery disease. Eur Heart J 25(16):1412–1418PubMedCrossRefGoogle Scholar
  24. 24.
    Fichtlscherer S, Dimmeler S, Breuer S, Busse R, Zeiher AM, Fleming I (2004) Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation 109(2):178–183, Epub 2003 Dec 8PubMedCrossRefGoogle Scholar
  25. 25.
    Husain S, Andrews NP, Mulcahy D, Panza JA, Quyyumi AA (1998) Aspirin Improves Endothelial Dysfunction in Atherosclerosis Circulation 97:716–720Google Scholar
  26. 26.
    Schindler TH, Nitzsche EU, Olschewski M, Magosaki N, Mix M, Prior JO, Facta AD, Solzbach U, Just H, Schelbert HR (2004) Chronic inflammation and impaired coronary vasoreactivity in patients with coronary risk factors. Circulation 110(9):1069–1075, Epub 2004 Aug 16PubMedCrossRefGoogle Scholar
  27. 27.
    Tomai F, Ribichini F, Ghini AS, Ferrero V, Ando G, Vassanelli C, Romeo F, Crea F, Chiariello L (2005) Elevated C-reactive protein levels and coronary microvascular dysfunction in patients with coronary artery disease. Eur Heart J 26(20):2099–2105, Epub 2005 Jun 16PubMedCrossRefGoogle Scholar
  28. 28.
    Lind P, Hedblad B, Stavenow L, Janzan L, Eriksson KF, Lindgarde F (2001) Influence of plasma fibrinogen levels on the incidence of myocardial infarction and death is modified by other inflammation-sensitive proteins: a long-termcohort study. Arterioscler ThrombVasc Biol 21:452–458Google Scholar
  29. 29.
    Rohde LE, Hennekens CH, Ridker PM (1999) Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol 84:1018–1022PubMedCrossRefGoogle Scholar
  30. 30.
    Navarro S, Ricart JM, Medina P, Vaya A, Villa P, Todoli J, Estelles A, Mico ML, Aznar J, Espana F (2004) Activated protein C levels in Behcet’s disease and risk of venous thrombosis. Br J Haematol 126(4):550–556PubMedCrossRefGoogle Scholar
  31. 31.
    Orem A, Erturk M, Cimsit G, Kural BV (2004) Effect of plasma from patients with Behcet’s disease on the production of nitric oxide in cultured human umbilical vein endothelial cells. Med Princ Pract 13(1):35–38PubMedCrossRefGoogle Scholar
  32. 32.
    Schalkwijk CG, Poland DC, van Dijk W, Kok A, Emeis JJ, Drager AM, Doni A, van Hinsbergh VW, Stehouwer CD (1999) Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia 42(3):351–357PubMedCrossRefGoogle Scholar
  33. 33.
    Duffy SJ, Biegelsen ES, Holbrook M, Russell JD, Gokce N, Keaney JF Jr, Vita JA (2001) Iron chelation improves endothelial function in patients with coronary artery disease. Circulation 103(23):2799–2804PubMedGoogle Scholar
  34. 34.
    Lohr NL, Warltier DC, Chilian WM, Weihrauch D (2005) Haptoglobin expression and activity during coronary collateralization. Am J Physiol Heart Circ Physiol 288(3):H1389–H1395, Epub 2004 Nov 18PubMedCrossRefGoogle Scholar
  35. 35.
    Hofma SH, van der Giessen WJ, van Dalen BM, Lemos PA, McFadden EP, Sianos G, Ligthart JM, van Essen D, de Feyter PJ, Serruys PW (2006) Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur Heart J 27(2):166–170, Epub 2005 Oct 25PubMedCrossRefGoogle Scholar
  36. 36.
    Urban P, Gershlick AH, Guagliumi G, Guyon P, Lotan C, Schofer J, Seth A, Sousa JE, Wijns W, Berge C, Deme M, Stoll HP; e-Cypher Investigators (2006) Safety of coronary sirolimus-eluting stents in daily clinical practice: one-year follow-up of the e-Cypher registry. Circulation 113(11):1434–1441, Epub 2006 Mar 13Google Scholar
  37. 37.
    van’t Veer M, Pijls NH, Aarnoudse W, Koolen JJ, van de Vosse FN (2006) Evaluation of the haemodynamic characteristics of drug-eluting stents at implantation and at follow-up. Eur Heart J 27(15):1811–1817, Epub 2006 Jul 5PubMedCrossRefGoogle Scholar
  38. 38.
    Meier P, Zbinden R, Togni M, Wenaweser P, Windecker S, Meier B, Seiler C (2007) Coronary collateral function long after drug-eluting stent implantation. J Am Coll Cardiol 49(1):15–20, Epub 2006 Dec 13PubMedCrossRefGoogle Scholar
  39. 39.
    Gössl M, Rosol M, Malyar NM, Fitzpatrick LA, Beighley PE, Zamir M, Ritman EL (2003) Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat Rec Part A 272:526–537CrossRefGoogle Scholar
  40. 40.
    Jeanmart H, Malo O, Carrier M, Nickner C, Desjardins N, Perrault LP (2002) Comparative study of cyclosporine and tacrolimus vs newer immunosuppressants mycophenolate mofetil and rapamycin on coronary endothelial function. J Heart Lung Transplant 21:990–998PubMedCrossRefGoogle Scholar
  41. 41.
    Engström G, Lind P, Hedblad B, Stavenow L, Janzan L, Lindgarde F (2002) Effects of cholesterol and inflammation-sensitive plasma proteins on incidence of myocardial infarction and stroke in men. Circulation 105:2632–2637PubMedCrossRefGoogle Scholar
  42. 42.
    Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104(22):2673–2678PubMedCrossRefGoogle Scholar
  43. 43.
    Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101(16):1899–1906PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Natale Daniele Brunetti
    • 1
  • Roberto Padalino
    • 1
  • Luisa De Gennaro
    • 1
  • Andrea Cuculo
    • 1
  • Luigi Ziccardi
    • 1
  • Pier Luigi Pellegrino
    • 1
  • Matteo Di Biase
    • 1
  1. 1.Cardiology DepartmentUniversity of FoggiaFoggiaItaly

Personalised recommendations