Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Beyond platelet inhibition: potential pleiotropic effects of ADP-receptor antagonists

  • 85 Accesses

  • 6 Citations


The adenosine diphosphate (ADP) receptor antagonists, specifically the class of thienopyridines, have emerged as potent tools in the clinician’s arsenal for the treatment of athero-thrombotic disease over the last two decades. Though these medications have been clearly demonstrated to have significant platelet-inhibiting effects, their potential positive impact on other systemic processes has been less well elucidated. Recent evidence points to a number of potential pleiotropic effects of these agents, most notably in the attenuation of several pro-inflammatory pathways, which may be independent of their anti-platelet-aggregating effect. Additionally, several new ADP receptor antagonists are under investigation; it remains to be seen if these agents possess any additional beneficial pleiotropic properties as well.

This is a preview of subscription content, log in to check access.


  1. 1.

    Badimon L, Vilahur G, Sanchez S, Duran X (2001) Atheromatous plaque formation and thrombogenesis: formation, risk factors and therapeutic approaches. Eur Heart J 22:I16–I22

  2. 2.

    AHA/ACC guidelines (2007) Available at: www.americanheart.org

  3. 3.

    Savi P, Pereillo JM, Uzabiaga MF et al (2000) Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 84:891–896

  4. 4.

    Nurden P, Savi P, Heilmann E et al (1995) An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets. Its influence on glycoprotein IIb/IIIa complex function. J Clin Invest 95:1612–1622

  5. 5.

    Quinton TM, Kim S, Dangelmaier C et al (2002) Protein kinase C- and calcium-regulated pathways independently synergize with Gi pathways in agonist-induced fibrinogen receptor activation. Biochem J 368:535–543

  6. 6.

    Storey RF, Sanderson HM, White AE et al (2000) The central role of the P2T receptor in amplification of human platelet activation, aggregation, secretion, and pro-coagulant activity. Br J Haematol 110:925–934

  7. 7.

    Palabrica T, Lobb R, Furie BC et al (1992) Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359:848–851

  8. 8.

    Weyrich AS, McIntyre TM, McEver RP et al (1995) Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1and tumor necrosis α secretion. J Clin Invest 95:2297–2303

  9. 9.

    Celi A, Pellegrini G, Lorenzet R et al (1994) P-selectin induces the expression of tissue-factor on monocytes. Proc Natl Acad Sci USA 91:8767–8771

  10. 10.

    Henn V, Slupsky JR, Grafe M et al (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–594

  11. 11.

    Schonbeck U, Libby P (2001) CD40 signaling and plaque instability. Circ Res 89:1092–1103

  12. 12.

    Mach F, Schonbeck U, Bonnefoy JY et al (1997) Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 96:396–399

  13. 13.

    Heeschen C, Dimmeler S, Hamm CW et al (2003) Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 348:1104–1111

  14. 14.

    Steinhubl SR, Badimon JJ, Bhatt DL et al (2007) Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vasc Med 12:113–122

  15. 15.

    Vane JR, Botting RM (2003) The mechanism of action of aspirin. Thromb Res 110:255–258

  16. 16.

    Aeberhard EE, Henderson SA, Arabolos NS et al (1995) Non-steroidal anti-inflammatory drugs inhibit expression of the inducible nitric oxide synthase gene. Biochem Biophys Res Commun 208:1053–1059

  17. 17.

    Kwon G, Hill JR, Corbett JA et al (1997) Effects of aspirin on nitric oxide formation and de novo protein synthesis by RINm5F cells and rat islets. Mol Pharmacol 52:398–405

  18. 18.

    Amin AR, Vyas P, Attur MG et al (1995) The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Natl Acas Sci USA 92:7926–7930

  19. 19.

    Kopp E, Ghosh S (1996) Inhibition of NK-kappa B by sodium salicylate and aspirin. Science 265:956–959

  20. 20.

    Shackelford RE, Alford PB, Xue Y et al (1997) Aspirin inhibits tumor necrosis factor-alpha gene expression in murine tissue macrophages. Mol Pharmacol 52:421–429

  21. 21.

    Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396:15–17

  22. 22.

    Liuzzo G, Biasucci LM, Gallimore JR et al (1994) The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med 331:417–424

  23. 23.

    Ridker PM, Cushman M, Stampfer MJ et al (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336:973–979

  24. 24.

    Ridker PM, Buring JE, Cook NR et al (2003) C-reactive protein, the metabolic syndrome and the risk of incident cardiovascular events: An 8-year follow-up of 14,719 initially healthy women. Circulation 107:391–397

  25. 25.

    Biasucci LM, Liuzzo G, Grillo RL et al (1999) Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation 99:855–860

  26. 26.

    Mazer SP, Rabbani LE (2004) Evidence for C-reactive protein’s role in (CRP) vascular disease: atherothrombosis, immuno-regulation and CRP. J Thromb Thrombolysis 17:95–105

  27. 27.

    Suleiman M, Aronson D, Reisner SA et al (2003) Admission C-reactive protein levels and 30-day mortality in patients with acute myocardial infarction. Am J Med 115:695–701

  28. 28.

    Ikonomidis I, Andreotti F, Economou E et al (1999) Increased proinflammatory cytokines in patients with chronic stable angina and their reduction by aspirin. Circulation 100:793–798

  29. 29.

    Woodward M, Lowe GD, Francis LM et al (2004) A randomized comparison of the effects of aspirin and clopidogrel on thrombotic risk factors and C-reactive protein following myocardial infarction: The CADET Trial. J Thromb Haemost 11:1934–1940

  30. 30.

    Takeda T, Hoshida S, Nishino M et al (2003) Relationship between effects of statins, aspirin, and angiotensin II modulators on high-sensitive C-reactive protein levels. Atherosclerosis 169:155–158

  31. 31.

    Hovens MM, Snoep JD, Groeneveld Y et al (2007) Effects of aspirin on serum C-reactive protein and interleukin-6 levels in patients with type 2 diabetes without cardiovascular disease: a randomized placebo-controlled crossover trial. Diabetes Obes Metab (epub ahead of print)

  32. 32.

    Joynt KE, Gattis WA, Hasselbald V et al (2004) Effect of angiotensin-converting enzyme inhibitors, beta-blockers, statins, and aspirin on C-reactive protein levels in outpatients with heart failure. Am J Cardiol 93:783–785

  33. 33.

    Kim HH, Liao JK (2008) Translational therapeutics of dipyridamole. Arterioscler Thromb Vasc Biol (epub ahead of print)

  34. 34.

    Liu Y, Shakur Y, Yoshitake M et al (2001) Cilostazol (pletal): a dual inhibitor of cyclic nucleotide phosphodiesterase type 3 and adenosine uptake. Cardiovasc Drug Rev 19:369–386

  35. 35.

    Weyrich AS, Denis MM, Kuhlmann-Eyre JR et al (2005) Dipyridamole selectively inhibits inflammatory gene expression in platelet monocyte aggregates. Circulation 111:633–642

  36. 36.

    Zhao L, Gray L, Leonardi-Bee J et al (2006) Effect of aspirin, clopidogrel and dipyridamole on soluble markers of vascular function in normal volunteers and patients with prior ischemic stroke. Platelets 17:100–104

  37. 37.

    Tsai CS, Lin FY, Chen YH et al (2008) Cilostazol attenuates MCP-1 and MMP-9 expression in vivo in LPS-administrated balloon-injured rabbit aorta and in vitro in LPS-treated monocytic THP-1 cells. J Cell Biochem 103:54–66

  38. 38.

    Agrawal NK, Maiti R, Dash D et al (2007) Cilostazol reduces inflammatory burden and oxidative stress in hypertensive type 2 diabetes mellitus patients. Pharmacol Res 56:118–123

  39. 39.

    Rao AK, Vaidyula VR, Bagga S et al (2006) Effect of antiplatelet agents clopidogrel, aspirin, and cilostazol on circulating tissue factor procoagulant activity in patients with peripheral arterial disease. Thromb Haemost 96:738–742

  40. 40.

    Lee BK, Lee SW, Park SW et al (2007) Effects of triple antiplatelet therapy (aspirin, clopidogrel, and cilostazol) on platelet aggregation and P-selectin expression in patients undergoing coronary artery stent implantation. Am J Cardiol 100:610–614

  41. 41.

    Gent M, Blakely JA, Easton JD et al (1989) The Canadian American Ticlopidine Study (CATS) in thromboembolic stroke. Lancet 1:1215–1220

  42. 42.

    CAPRIE Steering Committee (1996) A randomized, blinded, trial of clopidogrel versus aspirin in patients at risk of ischemic events (CAPRIE). Lancet 348:1329–1339

  43. 43.

    Yusuf S, Zhao F, Mehta SR et al (2001) Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 345:494–502

  44. 44.

    Sabatine MS, Cannon CP, Gibson CM et al (2005) Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N Engl J Med 352:1179–1189

  45. 45.

    Mehta SR, Yusuf S, Peters RJ et al (2001) Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary interventions: The PCI-CURE study. Lancet 358:527–533

  46. 46.

    Sabatine MS, Cannon CP, Gibson CM et al (2005) Effect of clopidogrel pretreatment before percutaneous coronary intervention in patients with ST-elevation myocardial infarction treated with fibrinolytics: PCI-CLARITY study. JAMA 294:1224–1232

  47. 47.

    Noll G, Luscher TF (1998) The endothelium in acute coronary syndromes. Eur Heart J 19(Suppl C):C30–C38

  48. 48.

    Jakubowski A, Chlopicki S, Olszanecki R et al (2005) Endothelial action of thienopyridines and thienopyrimidinones in the isolated guinea pig heart. Prostaglandins Leukot Essent Fatty Acids 72:139–145

  49. 49.

    Arrebola MM, De la Cruz JP, Villalobos MA et al (2004) In vitro effects of clopidogrel on the platelet-subendothelium interaction, platelet thromboxane and endothelial prostacyclin production, and nitric oxide synthesis. J Cardiovasc Pharmacol 43:74–82

  50. 50.

    Heitzer T, Rudolph V, Schwedhelm E et al (2006) Clopidogrel improves systemic endothelial nitric oxide bioavailability in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 26:1648–1652

  51. 51.

    Molero L, Lopez-Farre A, Mateos-Caceres PJ et al (2005) Effect of clopidogrel on the expression of inflammatory markers in rabbit ischemic coronary artery. Br J Pharmacol 146:419–424

  52. 52.

    Klinkhardt U, Bauersachs R, Adams J et al (2003) Clopidogrel but not aspirin reduces P-selectin expression and formation of platelet-leukocyte aggregates in patients with atherosclerotic vascular disease. Clin Pharmacol Ther 73:232–241

  53. 53.

    Evangelista V, Manarini S, Dell’Elba G et al (2005) Clopidogrel inhibits platelet-leukocyte adhesion and platelet-dependent leukocyte activation. Thromb Haemost 94:568–577

  54. 54.

    Harding SA, Sarma J, Din JN et al (2006) Clopidogrel reduces platelet-leukocyte aggregation, monocyte activation and RANTES secretion in type 2 diabetes mellitus. Heart 92:1335–1337

  55. 55.

    Quinn MJ, Bhatt DL, Zidar F et al (2004) Effect of clopidogrel pretreatment on inflammatory marker expression in patients undergoing percutaneous coronary intervention. Am J Cardiol 93:679–684

  56. 56.

    Azar RR, Kassab R, Zoghbi A et al (2006) Effects of clopidogrel on soluble CD40 ligand and on high-sensitivity C-reactive protein in patients with stable coronary artery disease. Am Heart J 151:521.e1–521.e4

  57. 57.

    Vavuranakis M, Latsios G, Aggelis D et al (2006) Randomized comparison of the effects of ASA plus clopidogrel versus ASA alone on early platelet activation in acute coronary syndromes with elevated high-sensitivity C-reactive protein and soluble CD40 ligand levels. Clin Ther 28:860–871

  58. 58.

    Angiolillo DJ, Fernandez-Ortiz A, Bernardo E et al (2006) Clopidogrel withdrawal is associated with proinflammatory and prothrombotic effects in patients with diabetes and coronary artery disease. Diabetes 55:780–784

  59. 59.

    Malek LA, Grabowski M, Spiewak M et al (2007) Relation between impaired antiplatelet response to clopidogrel and possible pleiotropic effects. J Thromb Thrombolysis 24:301–305

  60. 60.

    Chew DP, Bhatt DL, Robbins MA et al (2001) Effect of Clopidogrel added to aspirin before percutaneous coronary intervention on the risk associated with C-reactive protein. Am J Cardiol 88:672–674

  61. 61.

    Vivekananthan DP, Bhatt DL, Chew DP et al (2004) Effect of clopidogrel pretreatment on periprocedural rise in C-reactive protein after percutaneous coronary intervention. Am J Cardiol 94:358–360

  62. 62.

    Cha JK, Jeong MH, Lee KM et al (2002) Changes in platelet P-selectin and in plasma C-reactive protein in acute atherosclerotic ischemic stroke treated with a loading dose of clopidogrel. J Thromb Thrombolysis 14:145–150

  63. 63.

    Jakubowski JA, Winters KJ, Naganuma H et al (2007) Prasugrel: a novel thienopyridine antiplatelet agent. A review of preclinical and clinical studies and the mechanistic basis for its distinct antiplatelet profile. Cardiovasc Drug Rev 25:357–374

  64. 64.

    Niitsu Y, Jakubowski JA, Sugidachi A et al (2005) Pharmacology of CS-747 (prasugrel, LY 640315), a novel, potent antiplatelet agent with in vivo P2Y12 receptor antagonist activity. Semin Thromb Hemost 31:184–194

  65. 65.

    Wiviott SD, Braunwald E, McCabe CH et al (2007) Prasugrel versus clopidogrel in patients with acute coronary syndrome. N Engl J Med 357:2001–2015

  66. 66.

    Frelinger AL III, Jakubowski JA, Li Y et al (2007) The active metabolite of prasugrel inhibits ADP-stimulated thrombo-inflammatory markers of platelet activation: influence of other blood cells, calcium, and aspirin. Thromb Haemost 98:192–200

  67. 67.

    Tantry US, Bliden KP, Gurbel PA (2007) AZD6140. Expert Opin Investig Drugs 16:225–229

  68. 68.

    Storey RF, Husted S, Harrington RA et al (2007) Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes. J Am Coll Cardiol 50:1852–1856

  69. 69.

    Cannon CP, Husted S, Harrington RA et al (2007) Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial. J Am Coll Cardiol 50:1844–1851

  70. 70.

    Jacobsson F, Swahn E, Wallentin L et al (2002) Safety profile and tolerability of intravenous AR-C69931MX, a new antiplatelet drug, in unstable angina pectoris and non-Q-wave myocardial infarction. Clin Ther 24:752–765

  71. 71.

    Storey RF, Wilcox RG, Heptinstall S (2002) Comparison of the pharmacodynamic effects of the platelet ADP receptor antagonists clopidogrel and AR-C69931MX in patients with ischemic heart disease. Platelets 13:407–413

  72. 72.

    Storey RF, Judge HM, Wilcox RG et al (2003) Inhibition of ADP-induced P-selectin expression and platelet-leukocyte conjugate formation by clopidogrel and the P2Y12 receptor antagonist AR-C69932MX but not aspirin. Thromb Haemost 88:488–494

  73. 73.

    Bhatt DL, Fox KA, Hacke W et al (2006) Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med 354:1706–1717

Download references

Author information

Correspondence to LeRoy E. Rabbani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iyengar, S., Rabbani, L.E. Beyond platelet inhibition: potential pleiotropic effects of ADP-receptor antagonists. J Thromb Thrombolysis 27, 300–306 (2009). https://doi.org/10.1007/s11239-008-0221-2

Download citation


  • Thienopyridines
  • Pleiotropic effects
  • Platelet
  • Inflammation