Journal of Thrombosis and Thrombolysis

, Volume 25, Issue 1, pp 45–51 | Cite as

Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues



Using pharmacogenetics-based therapy, clinicians can estimate the therapeutic warfarin dose by genotyping patients for single nucleotide polymorphisms (SNPs) that affect warfarin metabolism or sensitivity. SNPs in the cytochrome P450 complex (CYP2C9) affect warfarin metabolism: patients who have the CYP2C9*2 and/or CYP2C9*3 variants metabolize warfarin slowly and are more likely to have an elevated International Normalized Ratio INR or to hemorrhage during warfarin initiation than patients without these variants. SNPs in vitamin K epoxide reductase (VKORC1) correlate with warfarin sensitivity. Patients who are homozygous for a common VKORC1 promoter polymorphism, −1639 G>A (also designated as VKOR 3673, haplotype A, or haplotype*2), are warfarin sensitive and typically require lower warfarin doses. By providing an estimate of the therapeutic warfarin dose, pharmacogenetics-based therapy may improve the safety of anticoagulant therapy. To improve drug safety, the FDA updates labels of previously approved drugs as new clinical and genetic evidence accrues. The labels of medical products serve to inform prescribers and patients about potential ways to improve the benefit/risk ratio and/or optimize doses of medical products. On August 16, 2007, the FDA updated the label of warfarin to include information on pharmacogenetic testing and to encourage, but not require, the use of this information in dosing individual patients initiating warfarin therapy. The FDA completed the label update in August 2007.


Pharmacogenetics Warfarin Anticoagulation Genetic polymorphism 


  1. 1.
    White RH, Beyth RJ, Zhou H, Romano PS (1999) Major bleeding after hospitalization for deep-venous thrombosis. Am J Med 107:414–424PubMedCrossRefGoogle Scholar
  2. 2.
    Landefeld SC, Beyth R (1993) Anticoagulant-related bleeding: clinical epidemiology, prediction and prevention. Am J Med 95:315–328PubMedCrossRefGoogle Scholar
  3. 3.
    Fihn SD, McDonell M, Martin D et al (1993) Risk factors for complications of chronic anticoagulation. A multicenter study. Ann Intern Med 118:511–520PubMedGoogle Scholar
  4. 4.
    Douketis JD, Foster GA, Crowther MA, Prins MH, Ginsberg JS (2000) Clinical risk factors and timing of recurrent venous thromboembolism during the initial 3 months of anticoagulant therapy. Arch Intern Med 160:3431–3436PubMedCrossRefGoogle Scholar
  5. 5.
    Beyth RJ, Quinn L, Landefeld CS (2000) A multicomponent intervention to prevent major bleeding complications in older patients receiving warfarin. A randomized, controlled trial. Ann Intern Med 133:687–695PubMedGoogle Scholar
  6. 6.
    Linkins LA, Choi PT, Douketis JD (2003) Clinical impact of bleeding in patients taking oral anticoagulant therapy for venous thromboembolism: a meta-analysis. Ann Intern Med 139:893–900PubMedGoogle Scholar
  7. 7.
    Hylek EM, Evans-Molina C, Shea C, Henault LE, Regan S (2007) Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation. Circulation 115:2689–2696PubMedCrossRefGoogle Scholar
  8. 8.
    Hirsh J, Fuster V, Ansell J, Halperin JL (2003) American heart association/american college of cardiology foundation guide to warfarin therapy. Circulation 107:1692–1711PubMedCrossRefGoogle Scholar
  9. 9.
    Ezekowitz MD, James KE, Radford MJ, Rickles FR, Redmond N (1999) Initiating and maintaining patients on warfarin anticoagulation: the importance of monitoring. J Cardiovasc Pharmacol Ther 4:3–8PubMedCrossRefGoogle Scholar
  10. 10.
    Ansell J, Hirsh J, Dalen J et al (2001) Managing oral anticoagulant therapy. Chest 119:22S–38SPubMedCrossRefGoogle Scholar
  11. 11.
    Redman AR (2001) Implications of cytochrome P450 2C9 polymorphism on warfarin metabolism and dosing. Pharmacotherapy 21:235–242PubMedCrossRefGoogle Scholar
  12. 12.
    Gage BF, Eby CS (2004) The genetics of vitamin K antagonists. Pharmacogenomics J 4:224–225PubMedCrossRefGoogle Scholar
  13. 13.
    Margaglione M, Colaizzo D, D’Andrea G et al (2000) Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 84:775–778PubMedGoogle Scholar
  14. 14.
    Gage BF, van Walraven C, Pearce L et al (2004) Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin. Circulation 110:2287–2292PubMedCrossRefGoogle Scholar
  15. 15.
    Taube J, Halsall D, Baglin T (2000) Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 96:1816–1819PubMedGoogle Scholar
  16. 16.
    Loebstein R, Yonath H, Peleg D et al (2001) Interindividual variability in sensitivity to warfarin-nature or nurture? Clin Pharmacol Ther 70:159–164PubMedCrossRefGoogle Scholar
  17. 17.
    Sanderson S, Emery J, Higgins J (2005) CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med 7:97–104PubMedCrossRefGoogle Scholar
  18. 18.
    Voora D, Eby C, Linder MW et al (2005) Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. Thromb Haemost 93:700–705PubMedGoogle Scholar
  19. 19.
    Higashi MK, Veenstra DL, Kondo LM et al (2002) Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287:1690–1698PubMedCrossRefGoogle Scholar
  20. 20.
    Allabi AC, Gala JL, Horsmans Y et al (2004) Functional impact of CYP2C95, CYP2C96, CYP2C98, and CYP2C911 in vivo among black Africans. Clin Pharmacol Ther 76:113–118PubMedCrossRefGoogle Scholar
  21. 21.
    Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA (2001) Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 11:803–808PubMedCrossRefGoogle Scholar
  22. 22.
    Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427:541–544PubMedCrossRefGoogle Scholar
  23. 23.
    Rost S, Fregin A, Ivaskevicius V et al (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427:537–541PubMedCrossRefGoogle Scholar
  24. 24.
    Hall JG, Pauli RM, Wilson KM (1980) Maternal and fetal sequelae of anticoagulation during pregnancy. Am J Med 68:122–140PubMedCrossRefGoogle Scholar
  25. 25.
    Sugiyama T, Takaki T, Sakanaka K et al (2007) Warfarin-induced impairment of cortical bone material quality and compensatory adaptation of cortical bone structure to mechanical stimuli. J Endocrinol 194:213–222PubMedCrossRefGoogle Scholar
  26. 26.
    Gage BF, Birman-Deych E, Radford MJ, Nilasena DS, Binder EF (2006) Risk of osteoporotic fracture in elderly patients taking warfarin: results from the national registry of atrial fibrillation 2. Arch Intern Med 166:241–246PubMedCrossRefGoogle Scholar
  27. 27.
    Fennerty A, Dolben J, Thomas P et al (1984) Flexible induction dose regimen for warfarin and prediction of maintenance dose. Br Med J (Clin Res Ed) 288:1268–1270CrossRefGoogle Scholar
  28. 28.
    Harrison L, Johnston M, Massicotte MP, Crowther M, Moffat K, Hirsh J (1997) Comparison of 5-mg and 10-mg loading doses in initiation of warfarin therapy. Ann Intern Med 126:133–136PubMedGoogle Scholar
  29. 29.
    Gedge J, Orme S, Hampton KK, Channer KS, Hendra TJ (2000) A comparison of a low-dose warfarin induction regimen with the modified Fennerty regimen in elderly inpatients. Age Ageing 29:31–34PubMedCrossRefGoogle Scholar
  30. 30.
    O’Connell MB, Kowal PR, Allivato CJ, Repka TL (2000) Evaluation of warfarin initiation regimens in elderly inpatients. Pharmacotherapy 20:923–930PubMedCrossRefGoogle Scholar
  31. 31.
    Roberts GW, Druskeit T, Jorgensen LE et al (1999) Comparison of an age adjusted warfarin loading protocol with empirical dosing and Fennerty’s protocol. Aust N Z J Med 29:731–736PubMedGoogle Scholar
  32. 32.
    Oates A, Jackson PR, Austin CA, Channer KS (1998) A new regimen for starting warfarin therapy in out-patients. Br J Clin Pharmacol 46:157–161PubMedCrossRefGoogle Scholar
  33. 33.
    Go AS, Hylek EM, Phillips KA et al (2001) Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study. JAMA 285:2370–2375PubMedCrossRefGoogle Scholar
  34. 34.
    Gage BF, Fihn SD, White RH (2001) Warfarin therapy for an octogenarian who has atrial fibrillation. Ann Intern Med 134:465–474PubMedGoogle Scholar
  35. 35.
    Majeed A, Moser K, Carroll K (2001) Trends in the prevalence and management of atrial fibrillation in general practice in England and Wales, 1994–1998: analysis of data from the general practice research database. Heart 86:284–288PubMedCrossRefGoogle Scholar
  36. 36.
    Gurwitz J, Avorn J, Ross-Degnan D, Choodnovskiy I, Ansell J (1992) Aging and the anticoagulant response to warfarin therapy. Ann Intern Med 116:901–904PubMedGoogle Scholar
  37. 37.
    Ageno W, Squizzato A, Dentali F, Crowther M (2005) Tailoring warfarin induction doses to reflect individual and disease-specific factors. Am J Med 118:143–144PubMedCrossRefGoogle Scholar
  38. 38.
    Visser LE, van Vliet M, van Schaik RH et al (2004) The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics 14:27–33PubMedCrossRefGoogle Scholar
  39. 39.
    Gage BF, Eby C, Banet G, Milligan P, McLeod H (2002) Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin (abstract). J Gen Intern Med 17:111Google Scholar
  40. 40.
    Steward DJ, Haining RL, Henne KR et al (1997) Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 7:361–367PubMedCrossRefGoogle Scholar
  41. 41.
    Takahashi H, Kashima T, Nomoto S et al (1998) Comparisons between in-vitro and in-vivo metabolism of (S)-warfarin: catalytic activities of cDNA-expressed CYP2C9, its Leu359 variant and their mixture versus unbound clearance in patients with the corresponding CYP2C9 genotypes. Pharmacogenetics 8:356–373CrossRefGoogle Scholar
  42. 42.
    Tabrizi AR, Zehnbauer BA, Borecki IB, McGrath SD, Buchman TG, Freeman BD (2002) The frequency and effects of cytochrome P450 (CYP) 2C9 polymorphisms in patients receiving warfarin. J Am Coll Surg 194:267–273PubMedCrossRefGoogle Scholar
  43. 43.
    Aithal GP, Day CP, Kesteven PJL, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719PubMedCrossRefGoogle Scholar
  44. 44.
    Kaminsky LS, de Morais SM, Faletto MB, Dunbar DA, Goldstein JA (1993) *Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 43:234–239PubMedGoogle Scholar
  45. 45.
    Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83–90PubMedGoogle Scholar
  46. 46.
    Rieder MJ, Reiner AP, Gage BF et al (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352:2285–2293PubMedCrossRefGoogle Scholar
  47. 47.
    Marsh S, King CR, Porche-Sorbet RM, Scott-Horton TJ, Eby CS (2006) Population variation in VKORC1 haplotype structure. J Thromb Haemost 4:473–474PubMedCrossRefGoogle Scholar
  48. 48.
    Reitsma PH, Heijden JF, Groot AP, Rosendaal FR, Buller HR (2005) A C1173T dimorphism in the VKORC1 gene determines coumarin sensitivity and bleeding risk. PLoS Med 2:e312PubMedCrossRefGoogle Scholar
  49. 49.
    Osman A, Enstrom C, Arbring K, Soderkvist P, Lindahl TL (2006) Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records. J Thromb Haemost 4:1723–1729PubMedCrossRefGoogle Scholar
  50. 50.
    Wadelius M, Chen LY, Downes K et al (2005) Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 5:262–270PubMedCrossRefGoogle Scholar
  51. 51.
    Sconce EA, Khan TI, Wynne HA et al (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333PubMedCrossRefGoogle Scholar
  52. 52.
    Loebstein R, Dvoskin I, Halkin H et al (2007) A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 109:2477–2480PubMedCrossRefGoogle Scholar
  53. 53.
    Shikata E, Ieiri I, Ishiguro S et al (2004) Association of pharmacokinetic (CYP2C9) and pharmacodynamic (vitamin K-dependent protein-Factors II, VII, IX, and X, proteins S and C, and {gamma}-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 103:2630–2635PubMedCrossRefGoogle Scholar
  54. 54.
    Chu K, Wu S, Stanley T, Stafford DW, High K (1996) A mutation in the propeptide of factor IX leads to warfarin sensitivity by a novel mechanism. J Clin Invest 98:1619–1625PubMedCrossRefGoogle Scholar
  55. 55.
    Oldenburg J, Quenzel EM, Harbrecht U et al (1997) Missense mutations at ALA-10 in the factor IX propeptide: an insignificant variant in normal life but a decisive cause of bleeding during oral anticoagulant therapy. Br J Haematol 98:240–244PubMedCrossRefGoogle Scholar
  56. 56.
    Vecsler M, Loebstein R, Almog S et al (2006) Combined genetic profiles of components and regulators of the vitamin K-dependent gamma-carboxylation system affect individual sensitivity to warfarin. Thromb Haemost 95:205–211PubMedGoogle Scholar
  57. 57.
    Wadelius M, Sorlin K, Wallerman O et al (2004) Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J 4(1):40–48PubMedCrossRefGoogle Scholar
  58. 58.
    Millican E, Lenzini P, Milligan P et al (2007) Genetic-based dosing in orthopaedic patients beginning warfarin therapy. Blood 110:1511–1515PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Washington University Medical CenterSt. LouisUSA
  2. 2.Office of Clinical PharmacologyCenter for Drug Evaluation and Research, Food and Drug AdministrationRockvilleUSA

Personalised recommendations