Advertisement

Probabilities of electoral outcomes: from three-candidate to four-candidate elections

  • Abdelhalim El Ouafdi
  • Dominique LepelleyEmail author
  • Hatem Smaoui
Article
  • 17 Downloads

Abstract

The main purpose of this paper is to compute the theoretical likelihood of some electoral outcomes under the impartial anonymous culture in four-candidate elections by using the last versions of software like LattE or Normaliz. By comparison with the three-candidate case, our results allow to analyze the impact of the number of candidates on the occurrence of these voting outcomes.

Keywords

Voting rules Voting paradoxes Condorcet efficiency Condorcet loser Manipulability 

Notes

References

  1. Barvinok, A. (1994). A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Mathematics of Operations Research, 19, 769–779.CrossRefGoogle Scholar
  2. Brandt, F., Geist, C., & Strobel, M. (2016). Analyzing the practical relevance of voting paradoxes via Ehrhart theory, computer simulations and empirical data. In J. Thangarajah et al. (Eds.) Proceedings of the 15th international conference on autonomous agents and multiagent systems (AAMAS 2016).Google Scholar
  3. Brandt, F., Hofbauer, J., & Strobel, M. (2019). Exploring the no-show paradox for Condorcet extensions using Ehrhart theory and computer simulations. http://dss.in.tum.de/files/brandt-research/noshow_study.pdf. Accessed 15 Oct 2019.
  4. Bruns, W., & Ichim, B. (2018). Polytope volumes by descent in the face lattice and applications in social choice. arXiv preprint arXiv:1807.02835.
  5. Bruns, W., Ichim, B., & Söger, C. (2019). Computations of volumes and Ehrhart series in four candidate elections. Annals of Operations Research, 280, 241–265.CrossRefGoogle Scholar
  6. Bruns, W., & Söger, C. (2015). The computation of generalized Ehrhart series in Normaliz. Journal of Symbolic Computation, 68, 75–86.CrossRefGoogle Scholar
  7. Bubboloni, D., Diss, M., & Gori, M. (2018). Extensions of the Simpson voting rule to committee selection setting, forthcoming in Public Choice.Google Scholar
  8. Clauss, P., & Loechner, V. (1998). Parametric analysis of polyhedral iteration spaces. Journal of VLSI Signal Processing, 19(2), 179–194.CrossRefGoogle Scholar
  9. De Loera, J. A., Dutra, B., Koeppe, M., Moreinis, S., Pinto, G., & Wu, J. (2013). Software for exact integration of polynomials over polytopes. Computational Geometry: Theory and Applications, 46, 232–252.CrossRefGoogle Scholar
  10. De Loera, J. A., Hemmecke, R., Tauzer, J., & Yoshida, R. (2004). Effective lattice point counting in rational convex polytopes. Journal of Symbolic Computation, 38, 1273–1302.CrossRefGoogle Scholar
  11. Diss, M., & Doghmi, A. (2016). Multi-winner scoring election methods: Condorcet consistency and paradoxes. Public Choice, 169, 97–116.CrossRefGoogle Scholar
  12. Diss, M., Kamwa, E., & Tlidi, A. (2018). A note on the likelihood of the absolute majority paradoxes. Economic Bulletin, 38, 1727–1734.Google Scholar
  13. Diss, M., Kamwa, E., & Tlidi, A. (2019). On some k-scoring rules for committees elections: agreement and Condorcet principle. https://hal.univ-antilles.fr/hal-02147735/document. Accessed 15 Oct 2019.
  14. Diss, M., & Mahajne, M. (2019). Social acceptability of Condorcet committees. https://halshs.archives-ouvertes.fr/halshs-02003292/document. Accessed 15 Oct 2019.
  15. Ehrhart, E. (1962). Sur les polyèdres rationnels homothétiques à n dimensions. Comptes Rendus de l’académie des Sciences paris, 254, 616–618.Google Scholar
  16. Gehrlein, W. V. (2001). Condorcet winners on four candidates with anonymous voters. Economics Letters, 71, 335–340.CrossRefGoogle Scholar
  17. Gehrlein, W. V. (2002). Obtaining representations for probabilities of voting outcomes with effectively unlimited precision integer arithmetic. Social Choice and Welfare, 19, 503–512.CrossRefGoogle Scholar
  18. Gehrlein, W. V. (2006). Condorcet’s paradox. Berlin: Springer.Google Scholar
  19. Gehrlein, W. V., & Fishburn, P. C. (1976). The probability of the paradox of voting: a computable solution. Journal of Economic Theory, 13, 14–25.CrossRefGoogle Scholar
  20. Gehrlein, W. V., & Lepelley, D. (2011). Voting paradoxes and group coherence. Berlin: Springer.CrossRefGoogle Scholar
  21. Gehrlein, W. V., & Lepelley, D. (2017). Elections, voting rules and paradoxical outcomes. Berlin: Springer.CrossRefGoogle Scholar
  22. Gehrlein, W. V., Lepelley, D., & Plassmann, F. (2018). An evaluation of the benefit of using two-stage election procedures. Homo Oeconomicus, 35, 53–79.CrossRefGoogle Scholar
  23. Huang, H. C., & Chua, V. (2000). Analytical representation of probabilities under the IAC condition. Social Choice and Welfare, 17, 143–155.CrossRefGoogle Scholar
  24. Lepelley, D. (1989). Contribution à l’analyse des procédures de décision collective, unpublished dissertation, université de Caen.Google Scholar
  25. Lepelley, D., Louichi, A., & Smaoui, H. (2008). On Ehrhart polynomials and probability calculations in voting theory. Social Choice and Welfare, 30, 363–383.CrossRefGoogle Scholar
  26. Lepelley, D., & Mbih, B. (1987). The proportion of coalitionally unstable situations under the plurality rule. Economics Letters, 24, 311–315.CrossRefGoogle Scholar
  27. Moulin, H. (1988). Axioms of cooperative decision making. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Schürmann, A. (2013). Exploiting polyhedral symmetries in social choice. Social Choice and Welfare, 40, 1097–1110.CrossRefGoogle Scholar
  29. Verdoolaege, S., & Bruynooghe, M. (2008). Algorithms for weighted counting over parametric polytopes: a survey and a practical comparison. In Proceedings of the 2008 international conference on information theory and statistical learning (ITSL).Google Scholar
  30. Wilson, M. C., & Pritchard, G. (2007). Probability calculations under the IAC hypothesis. Mathematical Social Sciences, 54, 244–256.CrossRefGoogle Scholar

Software

  1. Barvinok by Verdoolaege S, ver. 0.34. (2011). http://freshmeat.net/projects/barvinok.
  2. LattE integrale by De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R., & Köppe M., ver. 1.7.3. (2016). http://www.math.ucdavis.edu/~latte/.
  3. Normaliz by Bruns W, Ichim B, and Söger C, ver. 3.6.2. (2018). http://www.mathmatik.uni-osnabrueck.de/normaliz.
  4. lrs by Avis D, ver. 6.2. (2016). cgm.cs.mcgill.ca/~avis/C/lrs.html.Google Scholar
  5. Convex, a Maple package for convex geometry, Franz. (2017). http://www.math.uwo.ca/faculty/franz/convex/.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CEMOI, University of La RéunionSainte-ClotildeRéunion

Personalised recommendations