Theory and Decision

, Volume 86, Issue 1, pp 41–64 | Cite as

Intentional time inconsistency

  • Agah R. TuranEmail author


We propose a theoretical model to explain the usage of time-inconsistent behavior as a strategy to exploit others when reputation and trust have secondary effects on the economic outcome. We consider two agents with time-consistent preferences exploiting common resources. Supposing that an agent is believed to have time-inconsistent preferences with probability p,  we analyze whether she uses this misinformation when she has the opportunity to use it. Using the model originally provided by Levhari and Mirman (Bell J Econ 11(1):322–334, 1980), we determine the optimal degree of present bias that the agent would like to have while pretending to have time-inconsistent preferences and we provide the range of present-bias parameter under which deceiving is optimal. Moreover, by allowing the constant relative risk aversion class of utility form, we characterize the distinction between pretending to be naive and sophisticated.


Time-inconsistent preferences Hyperbolic discounting Dynamic game Common property resources Perfect Bayesian equilibrium 


  1. Ainslie, G. (1992). Picoeconomics: The strategic interaction of successive motivational states within the person. Cambridge: Cambridge University Press.Google Scholar
  2. Ainslie, G., & Haslam, N. (1992). Hyperbolic discounting. In G. Loewenstein & J. Elster (Eds.), Choice over time (pp. 57–92). New York: Russell Sage Foundation.Google Scholar
  3. Amir, R., & Nannerup, N. (2006). Information structure and the tragedy of the commons in resource extraction. Journal of Bioeconomics, 8(2), 147–165.CrossRefGoogle Scholar
  4. Bryan, G., Karlan, D., & Nelson, S. (2010). Commitment devices. Annual Review of Economics, 2(1), 671–698.CrossRefGoogle Scholar
  5. Battaglini, M., Benabou, R., & Tirole, J. (2005). Self-control in peer groups. Journal of Economic Theory, 123, 105–134.CrossRefGoogle Scholar
  6. Benabou, R., & Tirole, J. (2004). Willpower and personal rules. Journal of Political Economy, 112(4), 848–886.CrossRefGoogle Scholar
  7. Burks, S. V., Carpenter, J. P., Goette, L., & Rustichini, A. (2009). Cognitive skills affect economic preferences, strategic behavior, and job attachment. Proceedings of the National Academy of Sciences, 106, 7745–7750.CrossRefGoogle Scholar
  8. Di Corato, L. (2012). Optimal conservation policy under imperfect intergenerational altruism. Journal of Forest Economics, 18(3), 194–206.CrossRefGoogle Scholar
  9. Fehr, E., & Leibbrandt, A. (2011). A field study on cooperativeness and impatience in the tragedy of the commons. Journal of Public Economics, 95, 1144–1155.CrossRefGoogle Scholar
  10. Frederick, S., Loewenstein, G., & O’Donoghue, T. (2002). Time discounting and time preference: A critical review. Journal of Economic Literature, 40(2), 351–401.CrossRefGoogle Scholar
  11. Fudenberg, D., & Tirole, J. (1991). Game theory. Cambridge: MIT Press.Google Scholar
  12. Green, L., & Myerson, J. (2004). A discounting framework for choice with delayed and probabilistic rewards. Psychological Bulletin, 130(5), 769–792.CrossRefGoogle Scholar
  13. Green, L., & Myerson, J. (2010). Experimental and correlational analyses of delay and probability discounting. In G. J. Madden & W. K. Bickel (Eds.), Impulsivity: The behavioral and neurological science of discounting (pp. 67–92). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  14. Harris, C., & Laibson, D. (2001). Dynamic choices of hyperbolic consumers. Econometrica, 69(4), 935–957.CrossRefGoogle Scholar
  15. Haurie, A. (2005). A multigenerational game model to analyze sustainable development. Annals of Operations Research, 137(1), 369–386.CrossRefGoogle Scholar
  16. Haurie, A. (2006). A Stochastic multi-generation game with application to global climate change economic impact assessment. Annals of the International Society of Dynamic Games, 8, 309–332.CrossRefGoogle Scholar
  17. Haan, M., & Hauck, D. (2014). Games with possibly naive hyperbolic discounters. New York: Mimeo.Google Scholar
  18. Houser, D., Montinari, N., & Piovesan, M. (2012). Private and public decisions in social dilemmas: Evidence from children’s behavior. PLoS ONE, 7(8), e41568.CrossRefGoogle Scholar
  19. Jorgensen, S., Martin-Herran, G., & Zaccour, G. (2010). Dynamic games in the economics and management of pollution. Environmental Modeling and Assessment, 15, 433–467.CrossRefGoogle Scholar
  20. Karp, L. (2005). Global warming and hyperbolic discounting. Journal of Public Economics, 89(2), 261–282.CrossRefGoogle Scholar
  21. Kreps, D. M., & Wilson, R. (1982). Reputation and imperfect information. Journal of Economic Theory, 27(2), 253–279.CrossRefGoogle Scholar
  22. Krusell, P., & Smith, A. A. (2003). Consumption-savings decisions with quasi-geometric discounting. Econometrica, 71(1), 365–375.CrossRefGoogle Scholar
  23. Krusell, P., Kuruscu, B., & Smith, A. A. (2002). Equilibrium welfare and government policy with quasi-geometric discounting. Journal of Economic Theory, 105(1), 42–72.CrossRefGoogle Scholar
  24. Krusell, P., Kuruscu, B., & Smith, A. A. (2000). Tax policy with quasi-geometric discounting. International Economic Journal, 14(3), 1–40.CrossRefGoogle Scholar
  25. Laibson, D. (1994). Essays in hyperbolic discounting. Ph.D. dissertation, MIT.Google Scholar
  26. Laibson, D. (1997). Golden eggs and hyperbolic discounting. Quarterly Journal of Economics, 112, 443–77.CrossRefGoogle Scholar
  27. Laibson, D. (1998). Life-cycle consumption and hyperbolic discount functions. European Economic Review, 42(3), 861–871.CrossRefGoogle Scholar
  28. Levhari, D., & Mirman, L. (1980). The Great Fish war: An example using a dynamic Cournot-Nash solution. The Bell Journal of Economics, 11(1), 322–334.CrossRefGoogle Scholar
  29. McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. The Journal of Neuroscience, 27(21), 5796–5804.CrossRefGoogle Scholar
  30. Metcalfe, J., & Mischel, W. (1999). A hot/cool system analysis of delay gratification: Dynamics of willpower. Psychological Review, 106(1), 3–19.CrossRefGoogle Scholar
  31. Nowak, A. (2006). A multigenerational dynamic game of resource extraction. Mathematical Social Sciences, 51, 327–336.CrossRefGoogle Scholar
  32. O’Donoghue, T., & Rabin, M. (1999). Doing it now or later. American Economic Review, 89(1), 103–124.CrossRefGoogle Scholar
  33. Palacios-Huerta, I. (2003). Time-inconsistent preferences in Adam Smith and David Hume. History of Political Economy, 35(2), 241–268.CrossRefGoogle Scholar
  34. Phelps, E. S., & Pollak, R. A. (1968). On second-best national saving and game-equilibrium growth. The Review of Economic Studies, 35(2), 185–199.CrossRefGoogle Scholar
  35. Pollak, R. A. (1968). Consistent planning. The Review of Economic Studies, 35(2), 201–208.CrossRefGoogle Scholar
  36. Rachlin, H. (2000). The science of self-control. Cambridge: Harvard University Press.Google Scholar
  37. Selten, R. (1978). The chain store paradox. Theory and Decision, 9(2), 127–159.CrossRefGoogle Scholar
  38. Sigmund, K., Hauert, C., & Nowak, M. A. (2001). Reward and punishment. Proceedings of the National Academy of Sciences, 98(19), 10757–10762.CrossRefGoogle Scholar
  39. Soman, D., Ainslie, G., Frederick, S., Li, X., Lynch, J., Moreau, P., et al. (2005). The psychology of intertemporal discounting: Why are distant events valued differently from proximal ones? Marketing Letters, 16, 347–360.CrossRefGoogle Scholar
  40. Strotz, R. H. (1955). Myopia and inconsistency in dynamic utility maximization. The Review of Economic Studies, 23(3), 165–180.CrossRefGoogle Scholar
  41. Thaler, R. H., & Shefrin, H. (1981). An economic theory of self control. Journal of Political Economy, 89(1), 392–406.CrossRefGoogle Scholar
  42. Urminsky, O., & Zauberman, G. (2015). The psychology of intertemporal preferences. In G. Wu., & G. Keren (Eds.), Blackwell Handbook of Judgment and Decision Making (pp. 141–181).Google Scholar
  43. Van Long, N. (2011). Dynamic games in the economics of natural resources: A survey. Dynamic Games and Applications, 1(1), 115–148.CrossRefGoogle Scholar
  44. Van Long, N., Shimomura, K., & Takahashi, H. (1999). Comparing open-loop with Markov equilibria in a class of differential games. The Japanese Economic Review, 50, 457–469.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ministry of DevelopmentYucetepe-AnkaraTurkey

Personalised recommendations