Advertisement

Theory and Decision

, Volume 85, Issue 3–4, pp 479–493 | Cite as

Dictatorship on top-circular domains

  • Gopakumar Achuthankutty
  • Souvik Roy
Article
  • 36 Downloads

Abstract

We consider domains with a natural property called top-circularity. We show that if such a domain satisfies either the maximal conflict property or the weak conflict property, then it is dictatorial. We obtain the result in Sato (Rev Econ Des 14(3):331–342, 2010) as a corollary. Furthermore, it follows from our results that the union of a single-peaked domain and a single-dipped domain (with respect to a given ordering over the alternatives) is dictatorial.

Keywords

Dictatorial domains Top-circularity Maximal conflict property Weak conflict property 

Notes

Acknowledgements

The authors wish to thank an editor, an associate editor, and two anonymous referees for their insightful comments. The authors would also like to thank Madhuparna Karmakar, Manipushpak Mitra, Hans Peters, Soumyarup Sadhukhan, Arunava Sen, and Ton Storcken for their invaluable suggestions which helped improve this paper. The usual disclaimer holds.

References

  1. Alcalde-Unzu, J., Vorsatz, M. (2015). Strategy-proof location of public facilitiesGoogle Scholar
  2. Aswal, N., Chatterji, S., & Sen, A. (2003). Dictatorial domains. Economic Theory, 22(1), 45–62.  https://doi.org/10.1007/s00199-002-0285-8.CrossRefGoogle Scholar
  3. Barberà, S., Gul, F., & Stacchetti, E. (1993). Generalized median voter schemes and committees. Journal of Economic Theory, 61(2), 262–289.  https://doi.org/10.1006/jeth.1993.1069. http://www.sciencedirect.com/science/article/pii/S0022053183710690.CrossRefGoogle Scholar
  4. Barberà, S., Berga, D., & Moreno, B. (2012). Domains, ranges and strategy-proofness: The case of single-dipped preferences. Social Choice and Welfare, 39(2), 335–352.  https://doi.org/10.1007/s00355-011-0624-4.CrossRefGoogle Scholar
  5. Barberà, S., & Peleg, B. (1990). Strategy-proof voting schemes with continuous preferences. Social Choice and Welfare, 7(1), 31–38.  https://doi.org/10.1007/BF01832918.CrossRefGoogle Scholar
  6. Chatterji, S., & Sen, A. (2011). Tops-only domains. Economic Theory, 46(2), 255–282.  https://doi.org/10.1007/s00199-009-0509-2.CrossRefGoogle Scholar
  7. Feigenbaum, I., Sethuraman, J. (2014). Strategyproof mechanisms for one-dimensional hybrid and obnoxious facility location. arxiv:abs/1412.3414.
  8. Gibbard, A. (1973). Manipulation of voting schemes: A general result. Econometrica 41(4):587–601. http://www.jstor.org/stable/1914083 CrossRefGoogle Scholar
  9. Kim, K. H., & Roush, F. W. (1980). Special domains and nonmanipulability. Mathematical Social Sciences, 1(1), 85–92.  https://doi.org/10.1016/0165-4896(80)90007-4. http://www.sciencedirect.com/science/article/pii/0165489680900074.CrossRefGoogle Scholar
  10. Manjunath, V. (2014). Efficient and strategy-proof social choice when preferences are single-dipped. International Journal of Game Theory, 43(3), 579–597.  https://doi.org/10.1007/s00182-013-0396-4.CrossRefGoogle Scholar
  11. Moulin, H. (1980). On strategy-proofness and single peakedness. Public Choice, 35(4), 437–455.  https://doi.org/10.1007/BF00128122.CrossRefGoogle Scholar
  12. Peremans, W., & Storcken, T. (1999). Strategy-proofness on single-dipped preference domains. In: Proceedings of the international conference, logic, game theory, and social choice, pp. 296–313Google Scholar
  13. Pramanik, A. (2015). Further results on dictatorial domains. Social Choice and Welfare, 45(2), 379–398.  https://doi.org/10.1007/s00355-015-0889-0.CrossRefGoogle Scholar
  14. Roy, S., & Storcken, T. (2016). Unanimity, pareto optimality and strategy-proofness on connected domains. Working Paper.Google Scholar
  15. Sanver, M. R. (2007). A characterization of superdictatorial domains for strategy-proof social choice functions. Mathematical Social Sciences, 54(3), 257–260.  https://doi.org/10.1016/j.mathsocsci.2007.07.002. http://www.sciencedirect.com/science/article/pii/S016548960700073X.CrossRefGoogle Scholar
  16. Sato, S. (2010). Circular domains. Review of Economic Design, 14(3), 331–342.  https://doi.org/10.1007/s10058-010-0102-y.CrossRefGoogle Scholar
  17. Satterthwaite, M. A. (1975). Strategy-proofness and arrow’s conditions: Existence and correspondence theorems for voting procedures and social welfare functions. Journal of Economic Theory, 10(2), 187–217.  https://doi.org/10.1016/0022-0531(75)90050-2. http://www.sciencedirect.com/science/article/pii/0022053175900502.CrossRefGoogle Scholar
  18. Sen, A. (2001). Another direct proof of the gibbard-satterthwaite theorem. Economics Letters, 70(3), 381–385.  https://doi.org/10.1016/S0165-1765(00)00362-1. http://www.sciencedirect.com/science/article/pii/S0165176500003621.CrossRefGoogle Scholar
  19. Thomson, W. (2008). Where should your daughter go to college? An axiomatic analysis. Tech. rep., Mimeo University of Rochester.Google Scholar
  20. Weymark, J. A. (2011). A unified approach to strategy-proofness for single-peaked preferences. SERIEs, 2(4), 529–550.  https://doi.org/10.1007/s13209-011-0064-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Economic Research UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations