Advertisement

Theory and Decision

, Volume 84, Issue 2, pp 277–303 | Cite as

Modeling purchases of new cars: an analysis of the 2014 French market

  • Anna Fernández-Antolín
  • Matthieu de Lapparent
  • Michel Bierlaire
Article
  • 283 Downloads

Abstract

This paper analyzes and compares different policy scenarios as well as discusses price elasticities and willingness to pay and to accept using revealed preference (RP) data from the French new-car market in 2014 by means of a cross-nested logit (CNL) model. We focus particularly on electric and hybrid vehicles. We use interactions between the cost (both fixed and running costs) and the household income to analyze the sensitivity towards different policy scenarios per income level. Results show that the willingness to pay and to accept obtained in our study is consistent with the real-market conditions. We also find that the most effective scenario to increase the market shares of new sold electric vehicles is that of a major technological advance such as a decrease in price due to cheaper manufacturing costs and an increase in driving range, rather than a policy-based scenario. In addition, the market segment that has more potential to increase the market shares of electric vehicle purchase is the middle-income level. In the paper, we discuss how to overcome the difficulties of working with revealed preference data, and propose multiple imputations to impute the attributes of the unchosen alternatives, by drawing from their empirical distributions.

Keywords

Car-type choice Policy analysis Revealed preference data Cross-nested logit 

Notes

Acknowledgements

This study is financed by a research agreement with Nissan International SA, which is gratefully acknowledged.

References

  1. Abbe, E., Bierlaire, M., & Toledo, T. (2007). Normalization and correlation of cross-nested logit models. Transportation Research Part B: Methodological, 41(7), 795–808.CrossRefGoogle Scholar
  2. Adda, J., & Cooper, R. (2000). Balladurette and Juppette: A discrete analysis of scrapping subsidies. Journal of Political Economy, 108(4), 778–806.CrossRefGoogle Scholar
  3. Adepetu, A., & Keshav, S. (2017). The relative importance of price and driving range on electric vehicle adoption: Los Angeles case study. Transportation, 44(2), 353–373.CrossRefGoogle Scholar
  4. Anowar, S., Eluru, N., & Miranda-Moreno, L. F. (2014). Alternative modeling approaches used for examining automobile ownership: a comprehensive review. Transport Reviews, 34(4), 441–473.CrossRefGoogle Scholar
  5. Autobild. (2017). Audi RS3 Sportback. http://www.autobild.es/coches/audi/a3/rs3-sportback-5-2015. Accessed on 12.06.2017.
  6. Beck, M. J., Rose, J. M., & Hensher, D. A. (2013). Environmental attitudes and emissions charging: An example of policy implications for vehicle choice. Transportation Research Part A: Policy and Practice, 50, 171–182.Google Scholar
  7. Beck, M.J., Rose, J.M., & Greaves, S.P. (2017). I can’t believe your attitude: a joint estimation of best worst attitudes and electric vehicle choice. Transportation, 44(4), 753–772.Google Scholar
  8. Berkovec, J. (1985). Forecasting automobile demand using disaggregate choice models. Transportation Research Part B: Methodological, 19(4), 315–329.CrossRefGoogle Scholar
  9. Berkovec, J., & Rust, J. (1985). A nested logit model of automobile holdings for one vehicle households. Transportation Research Part B: Methodological, 19(4), 275–285.CrossRefGoogle Scholar
  10. Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile prices in market equilibrium. Econometrica, 63(4), 841.CrossRefGoogle Scholar
  11. Berry, S., Levinsohn, J., & Pakes, A. (1998 Mar). Differentiated products demand systems from a combination of micro and macro data: The new car market. Tech. rept. w6481. National Bureau of Economic Research, Cambridge, MA.Google Scholar
  12. Bierlaire, M. (2006). A theoretical analysis of the cross-nested logit model. Annals of Operations Research, 144(1), 287–300.CrossRefGoogle Scholar
  13. Brownstone, D., & Train, K. (1998). Forecasting new product penetration with flexible substitution patterns. Journal of Econometrics, 89(1–2), 109–129.CrossRefGoogle Scholar
  14. Cao, X., Mokhtarian, P. L., & Handy, S. L. (2006). Neighborhood design and vehicle type choice: Evidence from Northern California. Transportation Research Part D: Transport and Environment, 11(2), 133–145.CrossRefGoogle Scholar
  15. Cernicchiaro, G., & de Lapparent, M. (2015). A dynamic discrete/continuous choice model for forward-looking agents owning one or more vehicles. Computational Economics, 46(1), 15–34.CrossRefGoogle Scholar
  16. Choo, S., & Mokhtarian, P. L. (2004). What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice. Transportation Research Part A: Policy and Practice, 38(3), 201–222.Google Scholar
  17. Comité des Constructeurs Français d’Automobiles. (2016). SOeS. MEDDE: ASFA, Kantar Worldpanel; TNS; Setra; CPDP.Google Scholar
  18. Daziano, R. A. (2013). Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range. Resource and Energy Economics, 35(3), 429–450.CrossRefGoogle Scholar
  19. Daziano, R. A., & Achtnicht, M. (2014). Forecasting adoption of ultra-low-emission vehicles using bayes estimates of a multinomial probit model and the GHK simulator. Transportation Science, 48(4), 671–683.CrossRefGoogle Scholar
  20. de Jong, G., Fox, J., Daly, A., Pieters, M., & Smit, R. (2004). Comparison of car ownership models. Transport Reviews, 24(4), 379–408.CrossRefGoogle Scholar
  21. de Lapparent, M., & Cernicchiaro, G. (2012). How long to own and how much to use a car? A dynamic discrete choice model to explain holding duration and driven mileage. Economic Modelling, 29(5), 1737–1744.CrossRefGoogle Scholar
  22. de Palma, A., & Kilani, M. (2008). Regulation in the automobile industry. International Journal of Industrial Organization, 26(1), 150–167.CrossRefGoogle Scholar
  23. Dimitropoulos, A., Rietveld, P., & van Ommeren, J. (2013). Consumer valuation of changes in driving range: A meta-analysis. Transportation Research Part A: Policy and Practice, 55, 27–45.Google Scholar
  24. European Comission. 2011. Energy Roadmap 2050. Impact assessment and scenario analysis. https://ec.europa.eu/energy/sites/ener/files/documents/roadmap2050_ia_20120430_en_0.pdf.
  25. Glerum, A., Stankovikj, L., Thémans, M., & Bierlaire, M. (2014). Forecasting the demand for electric vehicles: Accounting for attitudes and perceptions. Transportation Science, 48(4), 483–499.CrossRefGoogle Scholar
  26. Hackbarth, A., & Madlener, R. (2013). Consumer preferences for alternative fuel vehicles: A discrete choice analysis. Transportation Research Part D: Transport and Environment, 25, 5–17.CrossRefGoogle Scholar
  27. Hackbarth, A., & Madlener, R. (2016). Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany. Transportation Research Part A: Policy and Practice, 85, 89–111.CrossRefGoogle Scholar
  28. Hess, S., Fowler, M., Adler, T., & Bahreinian, A. (2012). A joint model for vehicle type and fuel type choice: Evidence from a cross-nested logit study. Transportation, 39(3), 593–625.CrossRefGoogle Scholar
  29. Institut national de la statistique et des études économiques. (2016a). http://www.insee.fr/fr/themes/tableau.asp?reg_id=0&ref_id=NATTEF13629. Accessed on 20.11.2016.
  30. Institut national de la statistique et des études économiques. (2016b). http://www.insee.fr/fr/themes/tableau.asp?reg_id=0&ref_id=NATTEF05160. Accessed on 20.11.2016.
  31. Institut national de la statistique et des études économiques. (2016c). Prix moyens à la consommation en métropole - Utilisation de véhicules, biens et services de loisirs. http://www.bdm.insee.fr/bdm2/affichageSeries?idbank=000442588&idbank=000849411&bouton=OK&codeGroupe=169. Accessed on 21.11.2016.
  32. Jensen, A. F., Cherchi, E., Mabit, S. L., & Ortúzar, J. D. D. (2017). Predicting the potential market for electric vehicles. Transportation Science, 51(2), 427–440.Google Scholar
  33. Kim, J., Rasouli, S., & Timmermans, H. (2014). Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars. Transportation Research Part A: Policy and Practice, 69, 71–85.Google Scholar
  34. Lave, C. A., & Train, K. (1979). A disaggregate model of auto-type choice. Transportation Research Part A: General, 13(1), 1–9.CrossRefGoogle Scholar
  35. Mai, T., Frejinger, E., Fosgerau, M., & Bastin, F. (2015). June. A dynamic programming approach for quickly estimating large MEV models: Tech. rept.Google Scholar
  36. Massiani, J. (2014). Stated preference surveys for electric and alternative fuel vehicles: Are we doing the right thing? Transportation Letters, 6(3), 152–160.CrossRefGoogle Scholar
  37. McCarthy, P. S., & Tay, R. S. (1998). New vehicle consumption and fuel efficiency: A nested logit approach. Transportation Research Part E: Logistics and Transportation Review, 34(1), 39–51.CrossRefGoogle Scholar
  38. McFadden, D., Train, K., et al. (2000). Mixed MNL models for discrete response. Journal of applied Econometrics, 15(5), 447–470.CrossRefGoogle Scholar
  39. Ministère de l’environnement, de l’énergie et de la mer. 2016. Bonus-Malus : définitions et barèmes pour 2016. http://www.developpement-durable.gouv.fr/Bonus-Malus-definitions-et-baremes.html. Accessed on 21.11.2016.
  40. Mohammadian, A. (2002). Nested logit models and artificial neural networks for predicting household automobile choices: Comparison of performance. Transportation Research Record: Journal of the Transportation Research Board, 1807, 92–100.CrossRefGoogle Scholar
  41. Mohammadian, A., & Miller, E. (2003). Empirical investigation of household vehicle type choice decisions. Transportation Research Record: Journal of the Transportation Research Board, 1854, 99–106.CrossRefGoogle Scholar
  42. Page, M., Whelan, G., & Daly, A. (2000). Modelling the factors which influence new car purchasing. https://trid.trb.org/view.aspx?id=620795. Accessed 10 October 2017.
  43. Potoglou, D. (2008). Vehicle-type choice and neighbourhood characteristics: An empirical study of Hamilton, Canada. Transportation Research Part D: Transport and Environment, 13(3), 177–186.CrossRefGoogle Scholar
  44. Rasouli, S., & Timmermans, H. (2016). Influence of social networks on latent choice of electric cars: A mixed logit specification using experimental design data. Networks and Spatial Economics, 16(1), 99–130.CrossRefGoogle Scholar
  45. Schafer, J. L. (2000). Analysis of incomplete multivariate data. 1. ed., 1. crc press reprint edn. Monographs on statistics and applied probability, no. 72. Boca Raton: Chapman & Hall/CRC. OCLC: 249266966.Google Scholar
  46. Sud Ouest. (2015). Prix du gazole et de l’essence : ce qui va changer pour les automobilistes. http://www.sudouest.fr/2015/10/14/carburant-le-gouvernement-annonce-l-augmentation-de-la-taxe-sur-le-gazole-des-2016-2154678-4755.php. Accessed on 21.11.2016.
  47. Train, K. (1980). The potential market for non-gasoline-powered automobiles. Transportation Research Part A: General, 14(5–6), 405–414.CrossRefGoogle Scholar
  48. Train, K. (1986). Qualitative choice analysis: Theory, econometrics, and an application to automobile demand, MIT Press series in transportation studies (Vol. 10). Cambridge, Mass: MIT Press.Google Scholar
  49. Train, K. (2009). Discrete choice methods with simulation (2nd ed.). Cambridge: New York: Cambridge University Press.CrossRefGoogle Scholar
  50. Train, K. E., & Winston, C. (2007). Vehicle choice behavior and the declining market share of US automakers. International Economic Review, 48(4), 1469–1496.CrossRefGoogle Scholar
  51. U.S. Department of Energy. (2016). Energy Efficiency & Renewable Energy. http://www.fueleconomy.gov/feg/. Accessed on 21.11.2016.
  52. Wang, S., Fan, J., Zhao, D., Yang, S., & Fu, Y. (2016). Predicting consumers’ intention to adopt hybrid electric vehicles: Using an extended version of the theory of planned behavior model. Transportation, 43(1), 123–143.CrossRefGoogle Scholar
  53. Wu, G., Yamamoto, T., & Kitamura, R. (1999). Vehicle ownership model that incorporates the causal structure underlying attitudes toward vehicle ownership. Transportation Research Record: Journal of the Transportation Research Board, 1676, 61–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Transport and Mobility LaboratorySchool of Architecture, Civil and Environmental EngineeringLausanneSwitzerland
  2. 2.University of Applied Sciences and Arts Western Switzerland (HES-SO)School of Business and Engineering Vaud (HEIG-VD)Yverdon-les-BainsSwitzerland

Personalised recommendations