Advertisement

Theory and Decision

, Volume 79, Issue 4, pp 573–600 | Cite as

Detecting heterogeneous risk attitudes with mixed gambles

  • Luís Santos-PintoEmail author
  • Adrian Bruhin
  • José Mata
  • Thomas Åstebro
Article

Abstract

We propose a task for eliciting attitudes toward risk that is close to real-world risky decisions which typically involve gains and losses. The task consists of accepting or rejecting gambles that provide a gain with probability \(p\) and a loss with probability \(1-p\). We employ finite mixture models to uncover heterogeneity in risk preferences and find that (i) behavior is heterogeneous, with one half of the subjects behaving as expected utility maximizers, (ii) for the others, reference-dependent models perform better than those where subjects derive utility from final outcomes, (iii) models with sign-dependent decision weights perform better than those without, and (iv) there is no evidence for loss aversion. The procedure is sufficiently simple so that it can be easily used in field or lab experiments where risk elicitation is not the main experiment.

Keywords

Individual risk-taking behavior Latent heterogeneity  Finite mixture models Reference-dependence Loss aversion 

JEL Classification

C91 D81 

Notes

Acknowledgments

We thank James Cox, Erik Eyster, Glenn Harrison, Botond Koszegi, and Peter Wakker for various comments and suggestions. We also thank seminar and conference participants at HEC Paris, University of Lausanne, University Jaume I Castellon, Economic Science Association World Meeting in Copenhagen, International Meeting on Behavioral and Experimental Economics in Barcelona, D-TEA Workshop in Paris, and the 68th European Meetings of the Econometric Society in Toulouse. Support from HEC Paris Foundation, Swiss National Science Foundation grant 135602, NOVA FORUM, and Fundação para a Ciência e Tecnologia is gratefully acknowledged.

References

  1. Abdellaoui, M. (2000). Parameter-free elicitation of utility and probability weighting functions. Management Science, 46, 1497–1512.zbMATHCrossRefGoogle Scholar
  2. Abdellaoui, M., Bleichrodt, H., & Paraschiv, C. (2007). Loss aversion under prospect theory: A parameter-free measurement. Management Science, 53, 1659–1674.CrossRefGoogle Scholar
  3. Abdellaoui, M., Bleichrodt, H., & L’Haridon, O. (2008). A tractable method to measure utility and loss aversion under prospect theory. Journal of Risk and Uncertainty, 36, 245–266.zbMATHCrossRefGoogle Scholar
  4. Barseghyan, L., Molinari, F., O’Donoghue, T., & Teitelbaum, J. (2010). The nature of risk preferences: Evidence from insurance choices, Working paper, SSRN.Google Scholar
  5. Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7), 719–725.CrossRefGoogle Scholar
  6. Bordalo, P., Gennaioli, N., & Shleifer, A. (2012). Salience theory of choice under risk. Quarterly Journal of Economics, 127(3), 1243–1285.CrossRefGoogle Scholar
  7. Brunner, T., Levinsky, R., & Qiu, J., (2007). A note on skewness seeking: An experimental analysis,” Jena Economic Research Papers, 079.Google Scholar
  8. Bruhin, A., Fehr-Duda, H., & Epper, T. (2010). Risk and rationality: Uncovering heterogeneity in probability distortion. Econometrica, 78(4), 1375–1412.zbMATHMathSciNetCrossRefGoogle Scholar
  9. Cohen, A., & Einav, L. (2007). Estimating risk preferences from deductible choice. The American Economic Review, 97(3), 745–788.CrossRefGoogle Scholar
  10. Conte, A., Hey, J., & Moffat, P. (2011). Mixture models of choice under risk. Journal of Econometrics, 162(1), 79–82.MathSciNetCrossRefGoogle Scholar
  11. Deck, C., & Schlesinger, H. (2010). Exploring higher-order risk effects. Review of Economic Studies, 77, 1403–1420.zbMATHCrossRefGoogle Scholar
  12. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM Algorithm. Journal of the Royal Statistical Society Series B, 39, 1–38.zbMATHMathSciNetGoogle Scholar
  13. Ebert, S., & Wiesen, D. (2009). An experimental methodology for testing for prudence and third-order preferences, Bonn Econ Discussion Papers, 21.Google Scholar
  14. El-Gamal, M., & Grether, D. (1995). Are people Bayesian? Uncovering behavioral strategies. Journal of the American Statistical Association, 90, 1137–1145.zbMATHCrossRefGoogle Scholar
  15. Ert, E., & Erev, I. (2010). On the descriptive value of loss aversion under risk, Working paper, Harvard Business School.Google Scholar
  16. Falk, A., & Heckman, J. (2009). Lab experiments are a major source of knowledge in the social sciences. Science, 326(5952), 535–538.CrossRefPubMedADSGoogle Scholar
  17. Fehr-Duda, H., Bruhin, A., Epper, T., & Schubert, R. (2010). Rationality on the rise: Why relative risk aversion increases with stake size. Journal of Risk and Uncertainty, 40(2), 147–180.CrossRefGoogle Scholar
  18. Gächter, S., Johnson, E., & Herrmann, A. (2007). Individual-level loss aversion in riskless and risky choices, Centre for Decision Research and Experimental Economics Discussion Paper Series, ISSN 1749–3293.Google Scholar
  19. Goldstein, W., & Einhorn, H. (1987). Expression theory and the preference reversal phenomena. Psychological Review, 94, 236–254.CrossRefGoogle Scholar
  20. Greiner, B. (2004). An online recruiting system for economic experiments. In K. Kremer & V. Macho (Eds.), Forschung und wissenschaftliches Rechnen 2003. GWDG Bericht 63 (pp. 79–93). Göttingen: Ges. für Wiss.Google Scholar
  21. Harrison, G., & Rutström, E. (2009). Expected utility theory and prospect theory: One wedding and a decent funeral. Experimental Economics, 12, 133–158.zbMATHCrossRefGoogle Scholar
  22. Hey, J., & Orme, C. (1994). Investigating generalizations of expected utility theory using experimental data. Econometrica, 62(6), 1291–1326.zbMATHCrossRefGoogle Scholar
  23. Holt, C., & Laury, S. (2002). Risk aversion and incentive effects. American Economic Review, 92(5), 1644–1655.CrossRefGoogle Scholar
  24. Hong, C. S. (1983). A generalization of the quasilinear mean with applications to the measurement of income inequality and decision theory resolving the Allais Paradox. Econometrica, 51(4), 1065–1092.zbMATHMathSciNetCrossRefGoogle Scholar
  25. Houser, D., & Winter, J. (2004). How do behavioral assumptions affect structural inference? Journal of Business and Economic Statistics, 22, 64–79.MathSciNetCrossRefGoogle Scholar
  26. Houser, D., Keane, M., & McCabe, K. (2004). Behavior in a dynamic decision problem: An analysis of experimental evidence using a Bayesian type classification algorithm. Econometrica, 72, 781–822.zbMATHCrossRefGoogle Scholar
  27. Jullien, B., & Salanié, B. (2000). Estimating preferences under risk: The case of racetrack bettors. Journal of Political Economy, 108(3), 503–530.CrossRefGoogle Scholar
  28. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision making under risk. Econometrica, 47, 263–292.zbMATHCrossRefGoogle Scholar
  29. Köbberling, V., & Wakker, P. (2005). An index of loss aversion. Journal of Economic Theory, 122, 119–131.zbMATHMathSciNetCrossRefGoogle Scholar
  30. Lattimore, P. K., Baker, J. R., & Witte, A. D. (1992). The influence of probability on risky choice. Journal of Economic Behavior and Organization, 17, 377–400.CrossRefGoogle Scholar
  31. Levitt, S., & List, J. (2007). What do laboratory experiments measuring social preferences reveal about the real world? The Journal of Economic Perspectives, 21(2), 153–174.CrossRefGoogle Scholar
  32. Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778.MathSciNetCrossRefGoogle Scholar
  33. McFadden, D. (1981). Econometric models of probabilistic choice. In C. Manski & D. McFadden (Eds.), Structural analysis of discrete data with econometric applications. Cambridge, MA: MIT Press.Google Scholar
  34. McLachlan, G., & Peel, D. (2000). Finite mixture models., Wiley series in probabilities and statistics New York: Wiley.zbMATHCrossRefGoogle Scholar
  35. Muthén, B. (2003). Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003). Psychological Methods, 8(3), 369–377.CrossRefPubMedGoogle Scholar
  36. Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and Organization, 3, 323–343.CrossRefGoogle Scholar
  37. Schmidt, U., & Zank, H. (2005). What is loss aversion? Journal of Risk and Uncertainty, 30, 157–167.zbMATHCrossRefGoogle Scholar
  38. Schoemaker, P. (1982). The expected utility model: It’s variants purposes, evidence and limitations. Journal of Economic Literature, 20, 529–563.Google Scholar
  39. Snowberg, Eric., & Wolfers, Justin. (2010). Explaining the favorite-longshot bias: Is risk love or misperceptions? Journal of Political Economy, 118(4), 723–746.Google Scholar
  40. Stahl, D., & Wilson, P. (1995). On players’ models of other players: Theory and experimental evidence. Games and Economic Behavior, 10, 218–254.zbMATHMathSciNetCrossRefGoogle Scholar
  41. Starmer, C. (2000). Developments in non-expected utility theory: The hunt for a descriptive theory of choice under risk. Journal of Economic Literature, 38, 332–382.CrossRefGoogle Scholar
  42. Tanaka, T., Camerer, C. F., & Nguyen, Q. (2010). Risk and time preferences: Experimental and household survey data from Vietnam. The American Economic Review, 100(1), 557–571.CrossRefGoogle Scholar
  43. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.zbMATHCrossRefGoogle Scholar
  44. Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307–333.zbMATHMathSciNetCrossRefGoogle Scholar
  45. Wakker, P. (2010). Prospect theory for risk and uncertainty. New York: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Luís Santos-Pinto
    • 1
    Email author
  • Adrian Bruhin
    • 1
  • José Mata
    • 2
  • Thomas Åstebro
    • 3
  1. 1.Faculty of Business and Economics (HEC Lausanne)University of LausanneLausanneSwitzerland
  2. 2.Nova School of Business and Economics, INOVAUniversidade Nova de LisboaLisbonPortugal
  3. 3.HEC-ParisJouy-en-JosasFrance

Personalised recommendations