Theory and Decision

, Volume 77, Issue 1, pp 111–124 | Cite as

The potential of iterative voting to solve the separability problem in referendum elections

Article

Abstract

In referendum elections, voters are often required to register simultaneous votes on multiple proposals. The separability problem occurs when a voter’s preferred outcome on one proposal depends on the outcomes of other proposals. This type of interdependence can lead to unsatisfactory or even paradoxical election outcomes, such as a winning outcome that is the last choice of every voter. Here we propose an iterative voting scheme that allows voters to revise their voting strategies based on the outcomes of previous iterations. Using a robust computer simulation, we investigate the potential of this approach to solve the separability problem.

Keywords

Referendum elections Separability Iterative voting  Computer simulation Game theory Learning 

References

  1. Alvarez, R. M., & Nagler, J. (2001). The likely consequences of internet voting for political representation. Loyola of Los Angeles Law Review, 34, 1115–1153.Google Scholar
  2. Attar, A., Majumbar, D., el Piaser, G., & Porteiro, N. (2008). Common agency games: Indifference and separable preferences. Mathematical Social Sciences, 56, 79–95.CrossRefGoogle Scholar
  3. Bogomolnaia, A., & Jackson, M. O. (2002). The stability of hedonic coalition structures. Games and Economic Behavior, 38, 201–203.CrossRefGoogle Scholar
  4. Brams, S. J., Kilgour, D. M., & Zwicker, W. S. (1997). Voting on referenda: The separability problem and possible solutions. Electoral Studies, 16, 359–388.CrossRefGoogle Scholar
  5. Brams, S. J., Kilgour, D. M., & Sanver, M. R. (2007). A minimax procedure for electing committees. Public Choice, 132(3–4), 401–420.CrossRefGoogle Scholar
  6. Burani, N., & Zwicker, W. S. (2003). Coalition formation games with separable preferences. Mathematical Social Sciences, 45, 27–52.CrossRefGoogle Scholar
  7. Conitzer, V., Lang, J., & Xia, L. (2011). Hypercube preference aggregation in multi-issue domains. Proceedings of IJCAI-2011, 158–163.Google Scholar
  8. Fargier, H., Lang, J., Mengin, J., & Schmidt, N. (2012). Issue-by-issue voting: an experimental evaluation. Proceedings of MPREF-2012.Google Scholar
  9. Fudenberg, D., & Levine, D. K. (1998). The theory of learning in games. Cambridge: MIT Press.Google Scholar
  10. Fudenberg, D., & Levine, D. K. (2009). Learning and equilibrium. Annual Review of Economics, 1, 385–419.CrossRefGoogle Scholar
  11. Haake, C.-J., Raith, M. G., & Su, F. E. (2002). Bidding for envy-freeness: A procedural approach to \(n\)-player fair-division problems. Social Choice and Welfare, 19, 723–749.CrossRefGoogle Scholar
  12. Hodge, J. K. (2006). Permutations of separable preference orders. Discrete Applied Mathematics, 154, 1478–1499.CrossRefGoogle Scholar
  13. Hodge, J. K., & Klima, R. E. (2005). The mathematics of voting and elections: A hands-on approach. Providence: American Mathematical Society.Google Scholar
  14. Hodge, J. K., Krines, M., & Lahr, J. (2009). Preseparable extensions of multidimensional preferences. Order, 26, 125–147.CrossRefGoogle Scholar
  15. Hodge, J. K., & Schwallier, P. (2006). How does separability affect the desirability of referendum election outcomes? Theory and Decision, 61, 251–276.CrossRefGoogle Scholar
  16. Hodge, J. K., & TerHaar, M. (2008). Classifying interdependence in multidimensional binary preferences. Mathematical Social Sciences, 55(2), 190–204.CrossRefGoogle Scholar
  17. Kilgour, D. M., & Bradley, W. J. (1998). Nonseparable preferences and simultaneous elections. Washington: Paper presented at American Political Science Association.Google Scholar
  18. Lacy, D., & Niou, E. M. S. (1998). A problem with referendums. Journal of Theoretical Politics, 10, 5–31.CrossRefGoogle Scholar
  19. Lagerspetz, E. (1995). Paradoxes and representation. Electoral Studies, 15, 83–92.CrossRefGoogle Scholar
  20. Lang, J. (2007). Vote and aggregation in combinatorial domains with structured preferences. Proceedings of IJCAI-2007. Palo Alto: AAAI Press.Google Scholar
  21. Lang, J., & Mengin, J. (2009). The complexity of learning separable ceteris paribus preferences. Proceedings of IJCAI-2009. Palo Alto: AAAI Press.Google Scholar
  22. Milchtaich, I. (2009). Weighted congestion games with separable preferences. Games and Economic Behavior, 67, 750–757.CrossRefGoogle Scholar
  23. Mohen, J., & Glidden, J. (2001). The case for internet voting. Communications of the ACM, 44(1), 72–85.CrossRefGoogle Scholar
  24. Moulin, H. (1988). Axioms of cooperative decision making. New York: Cambridge University Press.CrossRefGoogle Scholar
  25. Nurmi, H. (1998). Voting paradoxes and referenda. Social Choice and Welfare, 15, 333–350.CrossRefGoogle Scholar
  26. Phillips, D. M., & Spakovsky, H. A. (2001). Gauging the risks of internet elections. Communications of the ACM, 44(1), 73–85.CrossRefGoogle Scholar
  27. Samuelson, L. (1997). Evolutionary games and equilibrium selection. Cambridge: MIT Press.Google Scholar
  28. Wagner, C. (1983). Anscombe’s paradox and the rule of three-fourths. Theory and Decision, 15, 303–308.CrossRefGoogle Scholar
  29. Wagner, C. (1984). Avoiding anscombe’s paradox. Theory and Decision, 15, 233–238.CrossRefGoogle Scholar
  30. Xia, L., Conitzer, V., & Lang, J. (2008). Voting on multiattribute domains with cyclic preferential dependencies. AAAI-2008, 202–207.Google Scholar
  31. Xia, L., Lang, J., & Ying, M. (2007). Strongly decomposable voting rules on multiattribute domains. AAAI-2007, 776–781.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of MathematicsGrand Valley State UniversityAllendaleUSA
  3. 3.Marian University College of Osteopathic MedicineIndianapolisUSA

Personalised recommendations