Advertisement

Theory and Decision

, Volume 74, Issue 3, pp 357–382 | Cite as

Parameters of social preference functions: measurement and external validity

  • Christoph Graf
  • Rudolf Vetschera
  • Yingchao Zhang
Article

Abstract

Most of the existing literature on social preferences either tests whether certain characteristics of the social context (like intentions of others) influence individual decisions, or tries to estimate parameters of social preference functions describing such behavior at the level of the entire population. In the present paper, we are concerned with measuring parameters of social preference functions at the individual level. We draw upon concepts developed for eliciting other types of utility functions, in particular the literature on decision making under incomplete information. Our method derives parameters of social preference functions from indifference statements about the distribution of payoffs a group. We apply our method in a controlled social preference experiment to establish the external validity of estimated parameters. Our results show the expected relationships to some external factors (like educational background of subjects) and also a strong correspondence between parameter estimates and factors that, according to the subjects’ own descriptions, influenced their behavior. We also find that some concepts discussed in the literature on social preferences, in particular envy toward players receiving a larger payoff, have very diverse and complex effects at the individual level.

Keywords

Social preferences Parameter estimation External validity Experiment Indifference values 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker G., DeGroot M., Marschak J. (1964) Measuring utility by a single-response sequential method. Behavioral Science 9: 226–236CrossRefGoogle Scholar
  2. Beuthe M., Scannella G. (2001) Comparative analysis of UTA multicriteria methods. European Journal of Operational Research 130: 246–262CrossRefGoogle Scholar
  3. Binmore K., Shaked A. (2010) Experimental economics: Where next?. Journal of Economic Behavior & Organization 73(1): 87–100CrossRefGoogle Scholar
  4. Bolton G. E., Ockenfels A. (2000) ERC: A theory of equity, reciprocity, and competition. American Economic Review 90(1): 166–193CrossRefGoogle Scholar
  5. Bous G., Fortemps P., Glineur F., Pirlot M. (2010) ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements. European Journal of Operational Research 206: 435–444CrossRefGoogle Scholar
  6. Brañas-Garza P., Cobo-Reyes R., Espinosa M. P., Jiménez N., Kovárík J., Ponti G. (2010) Altruism and social integration. Games and Economic Behavior 69(2): 249–257CrossRefGoogle Scholar
  7. Carlsson F., Johansson-Stenman O., Martinsson P. (2007) Do you enjoy having more than others? Survey evidence of positional goods. Economica 74(296): 586–598CrossRefGoogle Scholar
  8. Charness, G., & Rabin, M. (2000). Social preferences: Some simple tests and a new model. Econometric Society World Congress 2000 Contributed Papers 1483, Econometric Society.Google Scholar
  9. Charness G., Rabin M. (2002) Understanding social preferences with simple tests. The Quarterly Journal of Economics 117(3): 817–869CrossRefGoogle Scholar
  10. Chen Y., Li S. X. (2009) Group identity and social preferences. American Economic Review 99(1): 431–457CrossRefGoogle Scholar
  11. Clark A. E., Frijters P., Shields M. A. (2008) Relative income, happiness, and utility: An explanation for the Easterlin paradox and other puzzles. Journal of Economic Literature 46(1): 95–144CrossRefGoogle Scholar
  12. Cooper D., Kagel J. (2009) Other regarding preferences: A selective survey of experimental results. In: Kagel J., Roth A. (eds) The handbook of experimental economics. Princeton University Press, in preparationGoogle Scholar
  13. Daruvala D. (2010) Would the right social preference model please stand up!. Journal of Economic Behavior & Organization 73(2): 199–208CrossRefGoogle Scholar
  14. Dias L. C., Climaco J. C. (2000) Additive aggregation with variable interdependent parameters: The VIP analysis software. Journal of the Operational Research Society 51(9): 1070–1082Google Scholar
  15. Doumpos M., Zopounidis C. (2004) Developing sorting models using preference disaggregation analysis: An experimental investigation. European Journal of Operational Research 154(3): 585–598CrossRefGoogle Scholar
  16. Edwards W. (1977) How to use multiattribute utility measurement for social decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics SMC 7(5): 326–340CrossRefGoogle Scholar
  17. Engelmann D., Strobel M. (2004) Inequality aversion, efficiency, and maximin preferences in simple distribution experiments. American Economic Review 94(4): 857–869CrossRefGoogle Scholar
  18. Falk A., Fehr E., Fischbacher U. (2003) On the nature of fair behavior. Economic Inquiry 41(1): 20–26CrossRefGoogle Scholar
  19. Farquhar P. H. (1984) Utility asssessment methods. Management Science 30(11): 1283–1300CrossRefGoogle Scholar
  20. Fehr E., Schmidt K. M. (1999) A theory of fairness, competition, and cooperation. The Quarterly Journal of Economics 114(3): 817–868CrossRefGoogle Scholar
  21. Fehr E., Schmidt K. M. (2010) On inequity aversion: A reply to Binmore and Shaked. Journal of Economic Behavior & Organization 73(1): 101–108CrossRefGoogle Scholar
  22. Fehr E., Naef M., Schmidt K. M. (2006) Inequality aversion, efficiency, and maximin preferences in simple distribution experiments: Comment. American Economic Review 96(5): 1912–1917CrossRefGoogle Scholar
  23. Figueira J., Greco S., Slowinski R. (2009) Building a set of additive value functions representing a reference preorder and intensities of preference: Grip method. European Journal of Operational Research 95: 460–486CrossRefGoogle Scholar
  24. Frank R. H., Gilovich T., Regan D. T. (1993) Does studying economics inhibit cooperation?. The Journal of Economic Perspectives 7(2): 159–171CrossRefGoogle Scholar
  25. Greco S., Mousseau V., Slowinski R. (2008) Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. European Journal of Operational Research 191(2): 416–436CrossRefGoogle Scholar
  26. Greco S., Kadzinski M., Slowinski R. (2011) Selection of a representative value function in robust multiple criteria sorting. Computers and Operations Research 38: 1620–1637CrossRefGoogle Scholar
  27. Halpern J. J. (1994) The effect of friendship on personal business transactions. Journal of Conflict Resolution 38(4): 647–664CrossRefGoogle Scholar
  28. Hirschman A. O., Rothschild M. (1973) The changing tolerance for income inequality in the course of economic development; with a mathematical appendix. The Quarterly Journal of Economics 87(4): 544–566CrossRefGoogle Scholar
  29. Ho T. H., Su X. (2009) Peer-induced fairness in games. American Economic Review 99(5): 2022–2049CrossRefGoogle Scholar
  30. Jacquet-Lagreze E., Siskos J. (1982) Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research 10: 151–164CrossRefGoogle Scholar
  31. Kagel J., Wolfe K. (2001) Tests of fairness models based on equity considerations in a three-person ultimatum game. Experimental Economics 4(3): 203–219Google Scholar
  32. Keeney R. L., Raiffa H. (1976) Decisions with multiple objectives: Preferences and value tradeoffs. Wiley, New YorkGoogle Scholar
  33. Leider S., Moebius M. M., Rosenblat T., Do Q. A. (2009) Directed altruism and enforced reciprocity in social networks. The Quarterly Journal of Economics 124(4): 1815–1851CrossRefGoogle Scholar
  34. Maechler, M., Rousseeuw, P., Struyf, A., & Hubert, M. (2005). Cluster analysis basics and extensions. R package version 1.14.2.Google Scholar
  35. Ottone, S., & Ponzano, F. (2005) An extension to the model of inequity aversion by Fehr and Schmidt. Tech. Rep. 51.Google Scholar
  36. Park K. S., Kim S. H. (1997) Tools for interactive multiattribute decisionmaking with incompletely identified information. European Journal of Operational Research 98(1): 111–123CrossRefGoogle Scholar
  37. R Development Core Team. (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.Google Scholar
  38. Sawyer J. (1966) The altruism scale: A measure of co-operative, individualistic, and competitive interpersonal orientation. The American Journal of Sociology 71(4): 407–416CrossRefGoogle Scholar
  39. Schwand C., Vetschera R., Wakolbinger L. (2010) The influence of probabilities on the response mode bias in utility elicitation. Theory and Decision 69: 395–416CrossRefGoogle Scholar
  40. Selten R., Ockenfels A. (1998) An experimental solidarity game. Journal of Economic Behavior & Organization 34(4): 517–539CrossRefGoogle Scholar
  41. Srnka K. J., Koeszegi S. T. (2007) From words to numbers: How to transform qualitative data into meaningful quantitative results. Schmalenbach Business Review 59(1): 29–57Google Scholar
  42. Starmer C. (2000) Developments in non-expected utility theory: The hunt for a descriptive theory of choice under risk. Journal of Economic Literature 38(2): 332–382CrossRefGoogle Scholar
  43. Tan J. H. W., Bolle F. (2006) On the relative strengths of altruism and fairness. Theory and Decision 60(1): 35–67CrossRefGoogle Scholar
  44. Vetschera, R., Kainz, G. (2012). Do self-reported strategies match actual behavior in a social preference experiment? Group Decision and Negotiation. doi: 10.1007/s10726-012-9295-5.
  45. von Winterfeldt D., Edwards W. (1986) Decision analysis and behavioral research. Cambridge University Press, CambridgeGoogle Scholar
  46. Weber M. (1987) Decision making with incomplete information. European Journal of Operational Research 28(1): 44–57CrossRefGoogle Scholar
  47. Zeisberger S., Vrecko D., Langer T. (2012) Measuring the time stability of prospect theory preferences. Theory and Decision 72(3): 359–386CrossRefGoogle Scholar
  48. Zopounidis C., Doumpos M. (1999) A multicriteria decision aid methodology for sorting decision problems: The case of financial distress. Computational Economics 14(3): 197–218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Christoph Graf
    • 1
  • Rudolf Vetschera
    • 1
  • Yingchao Zhang
    • 1
  1. 1.Faculty of Business, Economics, and StatisticsUniversity of ViennaViennaAustria

Personalised recommendations