Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Values with exogenous payments

  • 70 Accesses

Abstract

The aim of cooperative game theory is to suggest and defend payoffs for the players that depend on a coalition function (characteristic function) describing the economic, social, or political situation. We consider situations where the payoffs for some players are determined exogenously. For example, in many countries, lawyers or real-estate agents obtain a regulated fee or a regulated percentage of the business involved. The aim of this article is to suggest and axiomatize two values with exogenous payments, an unweighted one and a weighted one.

This is a preview of subscription content, log in to check access.

References

  1. Aumann R. J., Drèze J. H. (1974) Cooperative games with coalition structures. International Journal of Game Theory 3: 217–237

  2. Bhimani A., Horngren C. T., Datar S. M., Foster G. (2008) Management and cost accounting. Prentice Hall, Harlow

  3. Brandenburger A., Stuart H. (2007) Biform games. Management Science 53: 537–549

  4. Derks J., Haller H. (1999) Null players out? Linear values for games with variable supports. International Game Theory Review 1: 301–314

  5. Driessen T. S. (1991) A survey of consistency properties in cooperative game theory. SIAM Review 33: 43–59

  6. Dubey P., Shapley L. S. (1979) Mathematical properties of the Banzhaf power index. Mathematical Operations Research 4: 99–131

  7. Haeringer G. (1999) Weighted Myerson value. International Game Theory Review 1: 187–192

  8. Hagemann, H. (2006). Leistungen und Provisionen transparent, wohnen im eigentum e.V., Bonn

  9. Hiller T. (2011) Analyse ausgewählter Problemstellungen der Organisations-und Personalwirtschaft mit Hilfe der kooperativen Spieltheorie. Gabler, Wiesbaden

  10. Kalai E., Samet D. (1987) On weighted Shapley values. International Journal of Game Theory 16: 205–222

  11. Peleg B. (1986) On the reduced game property and its converse. International Journal of Game Theory 15: 187–200

  12. Shapley L. S. (1953) A value for n-person games. In: Kuhn H., Tucker (Eds.) A. (eds) Contributions to the theory of games. Princeton University Press, Princeton, NJ, pp 307–317

  13. Spulber D. F. (1999) Market microstructure. Cambridge University Press, Cambridge, MA

  14. Thomson W. L. (1990) The consistency principle. In: Ichiishi T., Neyman A., Tauman Y (eds) Game theory and applications Proceedings of the 1987 international conference, Ohio State University. Academic Press, New York, NY, pp 187–215

  15. van den Brink R. (2001) An axiomatization of the Shapley value using a fairness property. International Journal of Game Theory 30: 309–319

  16. van den Brink R., van der Laan G. (1998) Axiomatizations of the normalized Banzhaf value and the Shapley value. Social Choice and Welfare 15: 567–582

  17. Winter, E. (2002). The Shapley value. In R. J. Aumann & S. Hart (Eds.), Handbook of game theory with economic applications (Chap 53, Vol. III, pp. 2025–2054). Amsterdam: Elsevier.

  18. Young H. P. (1985) Monotonic solutions of cooperative games. International Journal of Game Theory 14: 65–72

  19. Young, H. P. (1994). Cost allocation. In R. J. Aumann & S. Hart (Eds.), Handbook of game theory with economic applications (Chap 34, Vol. II, pp. 1193–1235). Amsterdam: Elsevier.

Download references

Author information

Correspondence to Harald Wiese.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wiese, H. Values with exogenous payments. Theory Decis 72, 485–508 (2012). https://doi.org/10.1007/s11238-011-9280-5

Download citation

Keywords

  • Shapley value
  • Exogenous payments
  • Cooperative game theory
  • Cost allocation
  • Real-estate agency

JEL Classification

  • C71