Theory and Decision

, Volume 73, Issue 1, pp 77–96

Non-linear mixed logit

  • Steffen Andersen
  • Glenn W. Harrison
  • Arne Risa Hole
  • Morten Lau
  • E. Elisabet Rutström


We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discounting functions to characterize impatience. There are several unexpected benefits of this extension, apart from the ability to directly estimate structural parameters of theoretical interest.


Risk attitudes Random coefficients Mixed logit Lottery choices Behavioral econometrics Structural estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison J., Begg C. B. (1976) Statistical diagnosis when basic cases are not classified with certainty. Biometrika 63(1): 1–12CrossRefGoogle Scholar
  2. Andersen S., Harrison G. W., Lau Morten I., Rutström E. E. (2008) Eliciting risk and time preferences. Econometrica 76(3): 583–619CrossRefGoogle Scholar
  3. Binswanger H. P. (1981) Attitudes toward risk: Theoretical implications of an experiment in rural India. Economic Journal 91: 867–890CrossRefGoogle Scholar
  4. Cameron A. C., Trivedi K. P. (2005) Microeconometrics: Methods and applications. Cambridge University Press, CambridgeGoogle Scholar
  5. Chen H. Z., Randall A. (1997) Semi-nonparametric estimation of binary response models with an application to natural resource valuation. Journal of Econometrics 76: 323–340CrossRefGoogle Scholar
  6. D’Agostino R. B., Belanger A. J., D’Agostino R. B. Jr. (1990) A suggestion for using powerful and informative tests of normality. American Statistician 44: 316–321Google Scholar
  7. Drukker D. M., Gates R. (2006) Generating Halton sequences using mata. Stata Journal 6(2): 214–228Google Scholar
  8. Gallant A. R. (1981) On the bias in flexible functional forms and an essentially unbiased form. Journal of Econometrics 15: 211–245CrossRefGoogle Scholar
  9. Greene W. (2008) Discrete choice modelling. In: Mills T. C., Patterson K. (eds) Palgrave handbook of econometrics applied econometrics Vol 2. Palgrave, LondonGoogle Scholar
  10. Harrison, G.W., & Rutström, E.E. (2008). Risk aversion in the laboratory. In J. C. Cox & G. W. Harrison (Eds.) Risk aversion in experiments, vol 12. UK: Bingley.Google Scholar
  11. Harrison G. W., Rutström E. E. (2008) Risk aversion in the laboratory. In: Cox J. C., Harrison G. W. (eds) Risk aversion in experiments emerald, research in experimental economics, Vol 12. Bingley, UKGoogle Scholar
  12. Herriges J. A., Phaneuf D. J. (2002) Inducing patterns of correlation and substitution in repeated logit models of recreation demand. American Journal of Agricultural Economics 84(4): 1076–1090CrossRefGoogle Scholar
  13. Hey J. D., Orme C. (1994) Investigating generalizations of expected utility theory using experimental data. Econometrica 62(6): 1291–1326CrossRefGoogle Scholar
  14. Hole A. R. (2007) Fitting mixed logit models by using maximum simulated likelihood. Stata Journal 7(3): 388–401Google Scholar
  15. Johnson N. L. (1949) Systems of frequency curves generated by methods of translation. Biometrika 36: 149–176Google Scholar
  16. Lesaffre E., Rizopoulos D., Tsonaka R. (2007) The logistic transform for bounded outcome scores. Biostatistics 8(1): 72–85CrossRefGoogle Scholar
  17. Luenberger D. G. (1998) Investment science. Oxford University Press, New YorkGoogle Scholar
  18. Matzkin R. L. (1991) Semiparametric estimation of monotone and concave utility functions for polychotomous choice models. Econometrica 59(5): 1315–1327CrossRefGoogle Scholar
  19. Matzkin R. L. (1992) Nonparametric and distribution-free estimation of the binary choice and the threshold crossing models. Econometrica 60(2): 239–270CrossRefGoogle Scholar
  20. McFadden D. (2001) Economic choices. American Economic Review 91: 351–378CrossRefGoogle Scholar
  21. McFadden D., Train K. (2000) Mixed MNL models for discrete response. Journal of Applied Econometrics 15: 447–470CrossRefGoogle Scholar
  22. Mead R. (1965) A generalised logit-normal distribution. Biometrics 21(3): 721–732CrossRefGoogle Scholar
  23. Pagan A., Ullah A. (1999) Nonparametric econometrics. Cambridge University Press, New YorkGoogle Scholar
  24. Revelt D., Train K. (1998) Mixed logit with repeated choices: Households’ choices of appliance efficiency levels. Review of Economics and Statistics 80: 647–657CrossRefGoogle Scholar
  25. Train K. E. (2003) Discrete choice methods with simulation. Cambridge University Press, New YorkCrossRefGoogle Scholar
  26. White H. (1980) Using least squares to approximate unknown regression functions. International Economic Review 21: 149–170CrossRefGoogle Scholar
  27. Wilcox N. T. (2008) Stochastic models for binary discrete choice under risk: A critical primer and econometric comparison. In: Cox J., Harrison G. W. (eds) Risk aversion in experiments, Vol 12. Emerald Research in Experimental Economics, BingleyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Steffen Andersen
    • 1
  • Glenn W. Harrison
    • 2
  • Arne Risa Hole
    • 3
  • Morten Lau
    • 4
  • E. Elisabet Rutström
    • 5
  1. 1.Department of EconomicsCopenhagen Business SchoolCopenhagenDenmark
  2. 2.Department of Risk Management & Insurance and CEAR, Robinson College of BusinessGeorgia State UniversityAtlantaUSA
  3. 3.Department of EconomicsUniversity of SheffieldSheffieldUK
  4. 4.Durham Business SchoolDurham UniversityDurhamUK
  5. 5.Robinson College of Business and Department of Economics, Andrew Young School of Policy StudiesGeorgia State UniversityAtlantaUSA

Personalised recommendations