Theory and Decision

, Volume 72, Issue 4, pp 509–523 | Cite as

A revealed preference analysis of solutions to simple allocation problems



We interpret solution rules on a class of simple allocation problems as data on the choices of a policy maker. We analyze conditions under which the policy maker’s choices are (i) rational (ii) transitive-rational, and (iii) representable; that is, they coincide with maximization of a (i) binary relation, (ii) transitive binary relation, and (iii) numerical function on the allocation space. Our main results are as follows: (i) a well-known property, contraction independence (a.k.a. IIA) is equivalent to rationality; (ii) every contraction independent and other-c monotonic rule is transitive-rational; and (iii) every contraction independent and other-c monotonic rule, if additionally continuous, can be represented by a numerical function.


Rational Contraction independence Weak axiom of revealed preference Strong axiom of revealed preference Continuity Monotonicity 

JEL Classification

D11 D81 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrow K. J. (1959) Rational choice functions and orderings. Economica 26: 121–127CrossRefGoogle Scholar
  2. Barberà S., Jackson M., Neme A. (1997) Strategy-proof allotment rules. Games and Economic Behavior 18: 1–21CrossRefGoogle Scholar
  3. Bénassy J. P. (1993) Nonclearing markets: Microeconomic concepts and macroeconomic applications. Journal of Economic Literature 31: 732–761Google Scholar
  4. Bossert W. (1994) Rational choice and two person bargaining solutions. Journal of Mathematical Economics 23: 549–563CrossRefGoogle Scholar
  5. Bossert W., Sprumont Y. (2009) Non-deteriorating choice. Economica 76(302): 337–363CrossRefGoogle Scholar
  6. Bossert W., Peters H. (2009) Single-peaked choice. Economic Theory 41: 213–230CrossRefGoogle Scholar
  7. Cachon G., Lariviere M. (1999) Capacity choice and allocation: Strategic behavior and supply chain performance. Management Science 45: 1091–1108CrossRefGoogle Scholar
  8. Chun Y., Thomson W. (1992) Bargaining problems with claims. Mathematical Social Sciences 24: 19–33CrossRefGoogle Scholar
  9. Debreu G. (1954) Representation of a preference ordering by a numerical function. In: Thrall R. M., Coombs C. H., Davis R. L. (eds) Decision processes. Wiley, New YorkGoogle Scholar
  10. Edgeworth F. Y. (1898) The pure theory of taxation. In: Musgrave R. A., Peacock A. T. (eds) (1958) Classics in the theory of public finance. Macmillan, New YorkGoogle Scholar
  11. Gale D. (1960) A note on revealed preference. Economica 27: 348–354CrossRefGoogle Scholar
  12. Hansson B. (1968) Choice structures and preference relations. Synthese 18: 443–458CrossRefGoogle Scholar
  13. Houthakker H. S. (1950) Revealed preference and the utility function. Economica 17: 159–174CrossRefGoogle Scholar
  14. Kıbrıs, Ö. (2003) Constrained allocation problems with single-peaked preferences: An axiomatic analysis. Social Choice and Welfare 20(3): 353–362CrossRefGoogle Scholar
  15. Kıbrıs Ö., Küçükşenel S. (2008) Uniform trade rules for uncleared markets. Social Choice and Welfare 32: 101–121Google Scholar
  16. Kihlstrom R., Mas-Colell A., Sonnenschein H. F. (1976) The demand theory of the weak axiom of revealed preference. Econometrica 44: 971–978CrossRefGoogle Scholar
  17. Kim T. (1987) Intransitive indifference and revealed preference. Econometrica 55: 95–115CrossRefGoogle Scholar
  18. Masatlioglu Y., Ok E. (2005) Rational choice with status-quo bias. Journal of Economic Theory 115: 1–29CrossRefGoogle Scholar
  19. Moulin H. (1985) Egalitarianism and utilitarianism in quasi-linear bargaining. Econometrica 53: 49–67CrossRefGoogle Scholar
  20. Nash J. F. (1950) The bargaining problem. Econometrica 18: 155–162CrossRefGoogle Scholar
  21. O’Neill B. (1982) A problem of rights arbitration from the Talmud. Mathematical Social Sciences 2: 287–301Google Scholar
  22. Ok E., Zhou L. (2000) The Choquet bargaining solutions. Games and Economic Behavior 33: 249–264CrossRefGoogle Scholar
  23. Peters H., Wakker P. (1991) Independence of irrelevant alternatives and revealed group preferences. Econometrica 59: 1787–1801CrossRefGoogle Scholar
  24. Peters H., Wakker P. (1994) WARP does not imply SARP for more than two commodities. Journal of Economic Theory 62: 152–160CrossRefGoogle Scholar
  25. Richter M. K. (1966) Revealed preference theory. Econometrica 34: 635–645CrossRefGoogle Scholar
  26. Rose H. (1958) Consistency of preference: The two-commodity case. Review of Economic Studies 25: 124–125CrossRefGoogle Scholar
  27. Rubinstein A., Salant Y. (2006) A model of choice from lists. Theoretical Economics 1: 3–17Google Scholar
  28. Rubinstein A., Salant Y. (2008) (A,f), Choice with frames. Review of Economic Studies 75(4): 1287–1296CrossRefGoogle Scholar
  29. Samuelson P. A. (1938) A note on the pure theory of consumer’s behavior. Economica 5: 61–71CrossRefGoogle Scholar
  30. Samuelson P. A. (1948) Consumption theory in terms of revealed preferences. Economica 15: 243–253CrossRefGoogle Scholar
  31. Sánchez, M. C. (2000). Rationality of bargaining solutions, Journal of Mathematical Economics, 389–399.Google Scholar
  32. Sen A. K. (1971) Choice functions and revealed preferences. Review of Economic Studies 38: 307–317CrossRefGoogle Scholar
  33. Shafer W.J. (1977) Revealed preference and aggregation. Econometrica 45(5): 1173–1182CrossRefGoogle Scholar
  34. Sondermann D. (1982) Revealed preference: An elementary treatment. Econometrica 50(3): 777–779CrossRefGoogle Scholar
  35. Sprumont Y. (1991) The division problem with single-peaked preferences: A characterization of the uniform allocation rule. Econometrica 49: 509–519CrossRefGoogle Scholar
  36. Y. (2007) Revealed incomplete preferences under status-quo bias. Mathematical Social Sciences 53: 274–283CrossRefGoogle Scholar
  37. Thomson W. (1997) The replacement principle in private good economies with single-peaked preferences. Journal of Economic Theory 76(1): 145–168CrossRefGoogle Scholar
  38. Thomson W. (2003) Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey. Mathematical Social Sciences 45: 249–297CrossRefGoogle Scholar
  39. Thomson, W. (2007). How to divide when there isn’t enough: From the Talmud to game theory (unpublished manuscript).Google Scholar
  40. Ville J. (1946) Sur les Conditions d’Existence d’Une Ophélimité Totale d’Un Indice du Niveau des Prix. Annales de l’Université de Lyon, Se A(3): 32–39Google Scholar
  41. Young P. (1987) On dividing an amount according to individual claims or liabilities. Mathematics of Operations Research 12: 398–414CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Faculty of Arts and Social SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations