Theory and Decision

, Volume 71, Issue 3, pp 365–372 | Cite as

Marginality, differential marginality, and the Banzhaf value

Article

Abstract

We revisit the Nowak (Int J Game Theory 26:137–141, 1997) characterization of the Banzhaf value via 2-efficiency, the Dummy player axiom, symmetry, and marginality. In particular, we provide a brief proof that also works within the classes of superadditive games and of simple games. Within the intersection of these classes, one even can drop marginality. Further, we show that marginality and symmetry can be replaced by van den Brink fairness/differential marginality. For this axiomatization, 2-efficiency can be relaxed into superadditivity on the full domain of games.

Keywords

Banzhaf value Additivity Marginality Differential marginality 

JEL Classification

C71 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso-Meijide J. M., Carreras F., Fiestras-Janeiro M. G., Owen G. (2007) A comparative axiomatic characterization of the Banzhaf-Owen coalitional value. Decision Support Systems 43: 701–712CrossRefGoogle Scholar
  2. Banzhaf J. F. (1965) Weighted voting does not work: A mathematical analysis. Rutgers Law Review 19: 317–343Google Scholar
  3. Casajus, A. (2009). Differential marginality, van den Brink fairness, and the Shapley value. Theory and Decision. doi:10.1007/s11238-009-9171-1.
  4. Casajus, A. (2010). 2-efficiency, superadditivity, and the Banzhaf value: A note on Lehrer (1988, Theorem B), working paper, LSI Leipziger Spieltheoretisches Institut, Leipzig, Germany.Google Scholar
  5. Derks J. J. M., Haller H. H. (1999) Null players out? Linear values for games with variable supports. International Game Theory Review 1(3–4): 301–314CrossRefGoogle Scholar
  6. Feltkamp V. (1995) Alternative axiomatic characterizations of the Shapley and the Banzhaf values. International Journal of Game Theory 24: 179–186CrossRefGoogle Scholar
  7. Haller H. (1994) Collusion properties of values. International Journal of Game Theory 23: 261–281CrossRefGoogle Scholar
  8. Lehrer E. (1988) An axiomatization of the Banzhaf value. International Journal of Game Theory 17(2): 89–99CrossRefGoogle Scholar
  9. Nowak A. S. (1997) On an axiomatization of the Banzhaf value without the additivity axiom. International Journal of Game Theory 26: 137–141CrossRefGoogle Scholar
  10. Owen G. (1975) Multilinear extensions and the Banzhaf value. Naval Research Logistic Quarterly 22: 741–750CrossRefGoogle Scholar
  11. Shapley L. S. (1953) A value for n-person games. In: Kuhn H., Tucker A. Contributions to the theory of games. Princeton University Press, Princeton, pp 307–317Google Scholar
  12. van den Brink R. (2001) An axiomatization of the Shapley value using a fairness property. International Journal of Game Theory 30: 309–319CrossRefGoogle Scholar
  13. Young H. P. (1985) Monotonic solutions of cooperative games. International Journal of Game Theory 14: 65–72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.LSI Leipziger Spieltheoretisches InstitutLeipzigGermany
  2. 2.IMW Institute of Mathematical EconomicsBielefeld UniversityBielefeldGermany
  3. 3.Chair of Economics and Information SystemsHHL Leipzig Graduate School of ManagementLeipzigGermany
  4. 4.Wirtschaftswissenschaftliche FakultätUniversität LeipzigLeipzigGermany

Personalised recommendations