Theory and Decision

, Volume 71, Issue 1, pp 111–128 | Cite as

Regular updating

  • Alain Chateauneuf
  • Thibault GajdosEmail author
  • Jean-Yves Jaffray


We study the Full Bayesian Updating rule for convex capacities. Following a route suggested by Jaffray (IEEE Transactions on Systems, Man and Cybernetics 22(5):1144–1152, 1992), we define some properties one may want to impose on the updating process, and identify the classes of (convex and strictly positive) capacities that satisfy these properties for the Full Bayesian Updating rule. This allows us to characterize two parametric families of convex capacities: \({(\varepsilon,\delta)}\) -contaminations (which were introduced, in a slightly different form, by Huber (Robust Statistics, Wiley, New York, 1981)) and \({\varepsilon}\) -contaminations.


Convex capacities \({\varepsilon}\) -contamination Updating Full Bayesian updating rule Regular updating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chateauneuf A., Jaffray J. (1989) Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion. Mathematical Social Sciences 17: 263–283CrossRefGoogle Scholar
  2. Chateauneuf, A., & Jaffray, J.-Y. (1995). Local Möbius transforms on monotone capacities. In ECSQARU (pp. 115–124).Google Scholar
  3. Dempster A. P. (1967) Probabilities induced by a multi-valued mapping. Annals of Mathematical Statistics 38: 325–339CrossRefGoogle Scholar
  4. Dempster A. P. (1968) A generalization of Bayesian inference. Journal of the Royal Statistical Society. Series B. Methodological 30: 205–247 (with discussion)Google Scholar
  5. Eichberger J., Grant S., Kelsey D. (2007) Updating Choquet beliefs. Journal of Mathematical Economics 43(7–8): 888–899CrossRefGoogle Scholar
  6. Eichberger, J., Grant, S., & Lefort, J.-P. (2009) Neo-additive capacities and updating. Working Paper.Google Scholar
  7. Fagin, R., & Halpern, Y. (1991). A new approach to updating beliefs. In P. P. Bonissone, M. Henrion, L. M. Kanal & J. Lemmer (Eds.), Uncertainty in artificial intelligence (vol. 6, pp. 347–374). New York, NY: Elsevier.Google Scholar
  8. Gilboa I., Schmeidler D. (1993) Updating ambiguous beliefs. Journal of Economic Theory 59: 33–49CrossRefGoogle Scholar
  9. Huber P. (1981) Robust statistics. Wiley, New YorkCrossRefGoogle Scholar
  10. Jaffray J.-Y. (1989) Linear utility for belief functions. Operations Research Letters 8: 107–112CrossRefGoogle Scholar
  11. Jaffray J.-Y. (1992) Bayesian updating and belief functions. IEEE Transactions on Systems, Man and Cybernetics 22(5): 1144–1152CrossRefGoogle Scholar
  12. Kyburg H. (1987) Bayesian and non-Bayesian evidential updating. Artificial Intelligence. An International Journal 31(3): 271–293Google Scholar
  13. Pires C. (2002) A rule for updating ambiguous beliefs. Theory and Decision 53(2): 137–152CrossRefGoogle Scholar
  14. Schmeidler D. (1989) Subjective probability and expected utility without additivity. Econometrica 57(3): 571–587CrossRefGoogle Scholar
  15. Shafer G. (1976) A mathematical theory of evidence. Princeton University Press, Princeton, New JerseyGoogle Scholar
  16. Walley P. (1991) Statistical reasoning with imprecise probabilities. Chapman and Hall, LondonGoogle Scholar
  17. Wang, T. (2003). Two classes of multiple priors, Discussion paper, Department of Finance, University British Columbia.Google Scholar
  18. Wasserman L. A., Kadane J. B. (1990) Bayes’ theorem for Choquet capacities. The Annals of Statistics 18: 1328–1339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Alain Chateauneuf
    • 1
  • Thibault Gajdos
    • 2
    Email author
  • Jean-Yves Jaffray
    • 3
  1. 1.PSE-CESUniversité Paris IParisFrance
  2. 2.CNRS, Ecole Polytechnique and CERSESParisFrance
  3. 3.LIP6Université Paris VIParisFrance

Personalised recommendations