Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A decision-theoretical view of default priors

  • 83 Accesses

  • 1 Citations

Abstract

In this article, we outline a simple and intuitively appealing procedure to derive default priors. The main idea is to regard the choice of such a prior as a formal Bayesian decision problem. We also discuss Jeffreys prior and more generally the reference prior of Bernardo (J R Stat Soc B 41:113–147, 1979) from this standpoint.

This is a preview of subscription content, log in to check access.

References

  1. Ali S., Silvey S. D. (1966) A general class of coefficients of divergence of one distribution from another. Journal of Royal Statistical Society B 28: 131–142

  2. Amari S. (1990) Differential-geometrical methods in statistics. Springer, Berlin

  3. Barndorff-Nielsen O. (1978) Information and exponential families in statistical theory. Wiley, Chichester

  4. Berger J. O., Bernardo J. M. (1992) On the development of reference priors (with discussion). In: Bernardo J. M., Berger J. O., Dawid A. P., Smith A. F. M. (eds) Bayesian statistics. Clarendon Press, Oxford, pp 35–60

  5. Bernardo J. M. (1979) Reference posterior distributions for Bayesian inference (with discussion). Journal of the Royal Statistical Society B 41: 113–147

  6. Bernardo J. M. (2005) Reference analysis. In: Dey D. K., Rao C. R. (eds) Handbook of statistics. Elsevier, Amsterdam, pp 17–90

  7. Bernardo J. M., Rueda R. (2002) Bayesian hypothesis testing: A reference approach. International Statistical Review 70: 351–372

  8. Bernardo J. M., Smith A. F. M. (1994) Bayesian theory. Wiley, Chichester

  9. Brown L. D. (1986) Fundamentals of statistical exponential families, with applications in statistical decision theory. Lecture Notes. Institute of Mathematical Statistics, Hayward

  10. Clarke B. S., Barron A. R. (1994) Jeffreys’ prior is asymptotically least favorable under entropy risk. Journal of Statistical Planning and Inference 41: 37–60

  11. Clarke B., Sun D. C. (1997) Reference priors under the chi-squared distance. Sankhyā 59: 215–231

  12. Cover T. M., Thomas J. A. (1991) Elements of information theory. Wiley, New York

  13. Csiszár I. (1967) Information-type measures of difference of probability distributions and indirect observations. Studia Scientiarum Mathematicarum Hungarica 2: 299–318

  14. Diaconis P., Ylvisaker D. (1979) Conjugate priors for exponential families. The Annals of Statistics 7: 269–281

  15. Gutiérrez-Peña E. (1992) Expected logarithmic divergence for exponential families. In: Bernardo J. M., Berger J. O., David A. P., Smith A. F. M. (eds) Bayesian statistics. Oxford University Press, Oxford, pp 669–674

  16. Gutiérrez-Peña E. (1997) Moments for the canonical parameter of an exponential family under a conjugate distribution. Biometrika 84: 727–732

  17. Gutiérrez-Peña E., Smith A. F. M. (1997) Exponential and Bayesian conjugate families: review and extensions. Test 6: 1–70

  18. Jeffreys H. (1946) An invariant form for the prior probability in estimation problems. Proceeding of the Royal Society A 186: 453–461

  19. Kass R. E., Wasserman L. A. (1996) The selection of prior distributions by formal rules. Journal of the American Statistical Association 91: 1343–1370

  20. Lunn D. J., Thomas A., Best N., Spiegelhalter D. (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10: 325–337

  21. Morris C. N. (1982) Natural exponential families with quadratic variance functions. The Annals of Statistics 10: 65–80

  22. Morris C. N. (1983) Natural exponential families with quadratic variance functions: statistical theory. The Annals of Statistics 11: 515–529

  23. Novick M. R., Hall W. J. (1965) A Bayesian indifference procedure. Journal of the American Statistical Association 60: 1104–1117

  24. Robert C. P. (1996) Intrinsic losses. Theory and Decision 40: 191–214

  25. Tierney L., Kadane J. B. (1986) Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association 81: 82–86

  26. Walker S. G. (2003) On sufficient conditions for Bayesian consistency. Biometrika 90: 482–488

Download references

Author information

Correspondence to Stephen G. Walker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walker, S.G., Gutiérrez-Peña, E. A decision-theoretical view of default priors. Theory Decis 70, 1–11 (2011). https://doi.org/10.1007/s11238-009-9174-y

Download citation

Keywords

  • Bayesian inference
  • Expected utility
  • Intrinsic loss
  • Logarithmic divergence
  • Objective prior
  • Parametric model
  • Reference prior