Advertisement

Theory and Decision

, Volume 69, Issue 4, pp 523–536 | Cite as

Another characterization of the Owen value without the additivity axiom

  • André CasajusEmail author
Article

Abstract

We provide another characterization of the Owen value for TU games with a coalition structure without the additivity axiom.

Keywords

Owen value Additivity Marginality Differential marginality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albizuri M.J. (2008) Axiomatizations of the Owen value without efficiency. Mathematical Social Sciences 55: 78–89Google Scholar
  2. Aumann R.J., Drèze J.H. (1974) Cooperative games with coalition structures. International Journal of Game Theory 3: 217–237CrossRefGoogle Scholar
  3. Banzhaf J.F. (1965) Weighted voting does not work: A mathematical analysis. Rutgers Law Review 19: 317–343Google Scholar
  4. Calvo E., Lasaga J., Winter E. (1996) The principle of balanced contributions and hierarchies of cooperation. Mathematical Social Sciences 31: 171–182CrossRefGoogle Scholar
  5. Casajus A. (2009) Outside options, component efficiency, and stability. Games and Economic Behavior 65(1): 49–61CrossRefGoogle Scholar
  6. Hamiache G. (2001) The Owen value values friendship. International Journal of Game Theory 29: 517–532CrossRefGoogle Scholar
  7. Hart S., Kurz M. (1983) Endogenous formation of coalitions. Econometrica 51: 1047–1064CrossRefGoogle Scholar
  8. Khmelnitskaya A.B., Yanovskaya E.B. (2007) Owen coalitional value without additivity axiom. Mathematical Methods of Operations Research 66(2): 255–261CrossRefGoogle Scholar
  9. Nowak A.S., Radzik T. (1994) A solidarity value for n-person transferable utility games. International Journal of Game Theory 23: 43–48CrossRefGoogle Scholar
  10. Owen G. (1975) Multilinear extensions and the Banzhaf value. Naval Research Logistic Quarterly 22: 741–750CrossRefGoogle Scholar
  11. Owen G. (1977) Values of games with a priori unions. In: Henn R., Moeschlin O. (eds) Essays in Mathematical Economics & Game Theory. Springer, Berlin, pp 76–88Google Scholar
  12. Owen G. (1981) Modification of the Banzhaf-Coleman index for games with a priori unions. In: Holler M.J. (eds) Power, voting, and voting power. Würzburg, Vienna, Physica-Verlag, pp 232–238Google Scholar
  13. Roth A.E. (1977) The Shapley value as a von Neumann-Morgenstern utility. Econometrica 45: 657–664CrossRefGoogle Scholar
  14. Shapley, L. S. (1953). A value for n-person games. In H. Kuhn & A. Tucker (Eds.), Contributions to the Theory of Games (Vol. II, pp. 307–317). Princeton: Princeton University Press.Google Scholar
  15. Wiese H. (2007) Measuring the power of parties within government coalitions. International Game Theory Review 9(2): 307–322CrossRefGoogle Scholar
  16. Winter E. (1989) A value for cooperative games with levels structure of cooperation. International Journal of Game Theory 18: 227–240CrossRefGoogle Scholar
  17. Young H.P. (1985) Monotonic solutions of cooperative games. International Journal of Game Theory 14: 65–72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.IMW Institute of Mathematical EconomicsBielefeld UniversityBielfeldGermany
  2. 2.Chair of Economics and Information SystemsHHL Leipzig Graduate School of ManagementLeipzigGermany
  3. 3.Wirtschaftswissenschaftliche FakultätUniversität LeipzigLeipzigGermany

Personalised recommendations