Advertisement

Theory and Decision

, 65:271 | Cite as

Eliciting beliefs

  • Robert Chambers
  • Tigran Melkonyan
Article

Abstract

We develop an algorithm that can be used to approximate a decisionmaker’s beliefs for a class of preference structures that includes, among others, α-maximin expected utility preferences, Choquet expected utility preferences, and, more generally, constant additive preferences. For both exact and statistical approximation, we demonstrate convergence in an appropriate sense to the true belief structure.

Keywords

α-Maximin expected utility Choquet expected utility Rank-dependent Invariant biseparable preferences Constant additive preferences Geometric tomography 

References

  1. Abdellaoui M. (2000) A parameter-free elicitation of utility and probability weighting functions. Management Science 46(11): 1497–1512CrossRefGoogle Scholar
  2. Abdellaoui, M., Vossmann, F., & Weber, M. (2005). Choice-based elicitation and decomposition of decision weights for gains and losses under uncertainty. Forthcoming in Management Science.Google Scholar
  3. Bewley, T. F. (1986). Knightian decision theory: Part I. Discussion Paper, Cowles Foundation.Google Scholar
  4. Bewley, T. F. (1987). Knightian decision theory: Part II. Discussion Paper, Cowles Foundation.Google Scholar
  5. Bleichrodt H., Pinto J.L. (2000) A parameter-free elicitation of the probability weighting function in medical decision analysis. Management Science 46(11): 1485–1496CrossRefGoogle Scholar
  6. Brondsted, A. (1983). An introduction to convex polytopes. Springer-Verlag.Google Scholar
  7. Camerer C.F., Ho T.-H. (1994) Valuations of the betweenness axiom and nonlinearity in probability. Journal of Risk and Uncertainty 8: 167–196CrossRefGoogle Scholar
  8. Chambers, R. G. (1988). Applied production analysis. Cambridge University Press.Google Scholar
  9. Chambers R.G., Melkonyan T.A. (2005) Eliciting the core of a supermodular capacity. Economic Theory 26(1): 203–210CrossRefGoogle Scholar
  10. Clarke F.H. (1983) Optimization and nonsmooth analysis. Wiley, New YorkGoogle Scholar
  11. Cohen M., Jaffray J.-Y. (1988) Certainty effect versus probability distortion: An experimental analysis of decision making under risk. Journal of Experimental Psychology: Human Perception and Performance 14(4): 554–560CrossRefGoogle Scholar
  12. Currim I., Sarin R.K. (1989) Prospect versus utility. Management Science 35: 22–41Google Scholar
  13. Davis D.D., Holt C.A. (1993) Experimental economics. Princeton University Press, PrincetonGoogle Scholar
  14. de Finetti, B. (1937). La Prévision: Ses Lois Logiques, ses Sources Subjectives. Annales de l’Institute Henri Poincaré, 7, 1–68. Translated into English by Henry E. Kyburg Jr., “Foresight: Its logical laws, its subjective sources,” In Kyburg Jr., H. E., & Smokler, H. E. (Eds.). (1964) Studies in subjective probability (2nd edn, pp. 53–118). New York: Wiley, 1980, New York: Krieger.Google Scholar
  15. Finetti B. (1972) Probability, induction and statistics. The art of guessing. John Wiley & Sons., London-New York-SydneyGoogle Scholar
  16. Diecidue, E., Wakker, P. P., & Zeelenberg, M. (2003). Using prospect theory to measure beliefs in stock performances for which probabilities are unknown. Working Paper.Google Scholar
  17. Dow J., Werlang S. (1992) Uncertainty aversion, risk aversion, and the optimal choice of portfolio. Econometrica 60: 197–204CrossRefGoogle Scholar
  18. Epstein L.G., Zhang J. (2001) Subjective probabilities on subjectively unambiguous events. Econometrica 69: 256–306CrossRefGoogle Scholar
  19. Fox C.R., Tversky A. (1998) A belief-based account of decision under uncertainty. Management Science 44: 879–895CrossRefGoogle Scholar
  20. Gardner, R. J. (1995). Geometric tomography. Cambridge University Press.Google Scholar
  21. Gardner R.J., Kiderlen M., Milanfar P. (2006) Convergence of algorithms for reconstructing convex bodies and directional measures. The Annals of Statistics 34: 1331–1374CrossRefGoogle Scholar
  22. Gardner R.J., Milanfar P. (2003) Reconstruction of convex bodies from brightness functions. Discrete and Computational Geometry 29: 279–303CrossRefGoogle Scholar
  23. Ghirardato P., Marinacci M. (2001) Risk, ambiguity, and the separation of utility and beliefs. Mathematics of Operations Research 26(4): 864–890CrossRefGoogle Scholar
  24. Ghirardato P., Maccheroni F., Marinacci M. (2004) Differentiating ambiguity and ambiguity attitude. Journal of Economic Theory 118(2): 133–73CrossRefGoogle Scholar
  25. Ghirardato P., Maccheroni F., Marinacci M. (2005) Certainty independence and the separation of utility and beliefs. Journal of Economic Theory 120: 129–136CrossRefGoogle Scholar
  26. Gilboa I., Schmeidler D. (1989) Maxmin expected utility with non-unique Prior. Journal of Mathematical Economics 18: 141–153CrossRefGoogle Scholar
  27. Good I.J. (1983) Good thinking: The foundations of probability and its applications. University of Minnesota Press, MinneapolisGoogle Scholar
  28. Kahneman D., Tversky A. (1979) Prospect theory: An analysis of decision under risk. Econometrica 47(2): 263–291CrossRefGoogle Scholar
  29. Karni E. (1999) Elicitation of subjective probabilities when preferences are state-dependent. International Economic Review 40: 479–486CrossRefGoogle Scholar
  30. Karl W.C., Kulkarni S.R., Verghese G.C., Willsky A.S. (1995) Local tests for consistency of support hyperplane data. Journal of Mathematical Imaging and Vision 6: 249–267CrossRefGoogle Scholar
  31. Kilka M., Weber M. (2001) What determines the shape of the probability weighting function under uncertainty?. Management Science 47(12): 1712–1726CrossRefGoogle Scholar
  32. Levi I. (1980) The enterprise of knowledge. MIT Press, Cambridge, MassachusettsGoogle Scholar
  33. Maccheroni F., Marinacci M., Rustichini A. (2006) Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74: 1447–1498CrossRefGoogle Scholar
  34. Machina M.J. (1982) ‘Expected utility’ Analysis without the independence axiom. Econometrica 50: 277–323CrossRefGoogle Scholar
  35. Mangelsdorff L., Weber M. (1994) Testing choquet expected utility. Journal of Economic Behavior and Organization 25: 437–457CrossRefGoogle Scholar
  36. Quiggin J. (1981) Risk perception and risk aversion among Australian farmers. Australian Journal of Agricultural Economics 25: 160–169Google Scholar
  37. Quiggin J. (1982) A theory of anticipated utility. Journal of Economic Behavior and Organization 3: 323–343CrossRefGoogle Scholar
  38. Savage L.J. (1971) Elicitation of personal probabilities and expectations. Journal of the American Statistical Association 66: 783–801CrossRefGoogle Scholar
  39. Schmeidler D. (1989) Subjective probability and expected utility without additivity. Econometrica 57: 571–587CrossRefGoogle Scholar
  40. Schneider, R. (1993). Convex bodies: The Brunn-Minkowski theory. Cambridge University Press.Google Scholar
  41. Smith C.A.B. (1961) Consistency in statistical inference and decision. Journal of Royal Statistical Society B 23: 1–25Google Scholar
  42. Starmer C., Sugden R. (1989) Probability and juxtaposition effects: An experimental investigation of the common ratio effect. Journal of Risk and Uncertainty 2: 159–178CrossRefGoogle Scholar
  43. Tversky A., Kahneman D. (1992) Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk and Uncertainty 5(4): 297–323CrossRefGoogle Scholar
  44. Viscusi K.W., Chesson H. (1999) Hopes and fears: The conflicting effects of risk ambiguity. Theory and Decision 47: 153–178CrossRefGoogle Scholar
  45. Walley P. (1991) Statistical reasoning with imprecise probabilities. London: Chapman & HallGoogle Scholar
  46. Walley P. (2000) Towards a unified theory of imprecise probability. International Journal of Imprecise Reasoning 24: 125–148CrossRefGoogle Scholar
  47. Wu G., Gonzalez R. (1999) Nonlinear decision weights in choice under uncertainty. Management Science 45: 74–85Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Agricultural and Resource EconomicsUniversity of Maryland, College ParkCollege ParkUSA
  2. 2.Resource EconomicsUniversity of Nevada, RenoRenoUSA

Personalised recommendations