Advertisement

Theory and Decision

, Volume 64, Issue 2–3, pp 333–362 | Cite as

Granny Versus Game Theorist: Ambiguity in Experimental Games

  • Jürgen Eichberger
  • David Kelsey
  • Burkhard C. SchipperEmail author
Article

Abstract

We report on an experiment in which subjects choose actions in strategic games with either strategic complements or substitutes against a granny, a game theorist or other subjects. The games are selected in order to test predictions on the comparative statics of equilibrium with respect to changes in strategic ambiguity. We find that subjects face higher ambiguity while playing against the granny than playing against the game theorist if we assume that subjects are ambiguity averse. Moreover, under the same assumption, subjects choose more secure actions in games more prone to ambiguity which is in line with the predictions.

Keywords

Choquet expected utility equilibrium under ambiguity experiments Knightian uncertainty strategic uncertainty 

JEL Classifications

C70 C72 C90 C91 D80 D81 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bewley, T.F. (1986), Knightian decision theory: Part I, Cowles Foundation Discussion Paper 807.Google Scholar
  2. Camerer, C. and Karjalainen, R. (1994), Ambiguity-aversion and non-additive beliefs in non-cooperative games: Experimental evidence, in, Munier, B. and Machina, M. (eds.), Models and Experiments in Risk and Rationality, Kluwer Academic Publishers, pp. 325–358.Google Scholar
  3. Camerer C., Weber M. (1992) Recent developments in modelling preferences: Uncertainty and ambiguity. Journal of Risk and Uncertainty 5: 777–795CrossRefGoogle Scholar
  4. Dow J., da Costa Werlang S.R. (1994) Nash equilibrium under Knightian uncertainty: Breaking down backward induction. Journal of Economic Theory 64, 305–324CrossRefGoogle Scholar
  5. Eichberger J., Kelsey D. (2000) Non-additive beliefs and strategic equilibria. Games and Economic Behavior 30, 183–215CrossRefGoogle Scholar
  6. Eichberger J., Kelsey D. (2002) Strategic complements, substitutes and ambiguity: The implications for public goods. Journal of Economic Theory 106: 436–466CrossRefGoogle Scholar
  7. Eichberger J., Kelsey D. (2005) Optimism and pessimism in games. mimeo., University of Exeter.Google Scholar
  8. Eichberger J., Kelsey D., Schipper B.C. (2006) Ambiguity and social interaction. mimeo., University of California, DavisGoogle Scholar
  9. Epstein L. (1997) Preference, rationalizability and equilibrium. Journal of Economic Theory 73, 1–29CrossRefGoogle Scholar
  10. Fischbacher, U. (1999), z-Tree-Zurich toolbox for readymade economic experiments—experimenter’s manual, mimeo., University of Zurich.Google Scholar
  11. Gilboa I., Schmeidler D. (1989) Maxmin expected utility with a non-unique prior. Journal of Mathematical Economics 18, 141–153CrossRefGoogle Scholar
  12. Groes E., Jacobson H.J., Sloth B., Tranæs T. (1998) Nash equilibrium with lower probabilities. Theory and Decision 44, 37–66CrossRefGoogle Scholar
  13. Haller H. (2000) Non-additive beliefs in solvable games. Theory and Decision 49, 313–338CrossRefGoogle Scholar
  14. Klibanoff, P. (1996), Uncertainty, decision, and normal form games, mimeo., Northwestern University.Google Scholar
  15. Lo K.C. (1999) Nash equilibrium without mutual knowledge of rationality. Economic Theory 14, 621–633CrossRefGoogle Scholar
  16. Lo K.C. (1996) Equilibrium in beliefs under uncertainty. Journal of Economic Theory 71, 443–484CrossRefGoogle Scholar
  17. Marinacci M. (2000) Ambiguous games. Games and Economic Behavior 31, 191–219CrossRefGoogle Scholar
  18. Miller G. (1956) The magical number seven, plus or minus two. Psychological Review 63, 81–97CrossRefGoogle Scholar
  19. Mukerji, S. (1997), A theory of play for games in strategic form when rationality is not common knowledge, mimeo.Google Scholar
  20. Ryan M. (2002) What do uncertainty-averse decision-makers believe?. Economic Theory 20, 47–65CrossRefGoogle Scholar
  21. Schmeidler D. (1989) Subjective probability and expected utility with additivity. Econometrica 57, 571–587CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Jürgen Eichberger
    • 1
  • David Kelsey
    • 2
  • Burkhard C. Schipper
    • 3
    Email author
  1. 1.Wirtschaftstheorie IAlfred-Weber-Institut für WirtschaftswissenschaftenHeidelbergGermany
  2. 2.Department of Economics, School of Business and EconomicsUniversity of ExeterExeter, DevonEngland
  3. 3.Department of EconomicsUniversity of California, DavisDavisUSA

Personalised recommendations