Theory and Decision

, Volume 59, Issue 2, pp 97–109 | Cite as

Borda and Condorcet: Some Distance Results

  • Christian Klamler


This paper provides a distance based analysis of the Borda rule with respect to Condorcet’s criterion. It shows that the minimal Condorcet consistency present in the Borda rule, whenever a Condorcet winner (the alternative that wins against every other alternative in a pairwise contest) exists, disappears in the case of voting cycles. First, it is shown that for certain preference profiles the Borda winner is furthest from being a Condorcet winner. Second, it is shown that there exist preference profiles for which the Borda winner is closest from being a Condorcet loser (the alternative that loses against every other alternative in a pairwise contest).


voting cycles Borda rule distance functions Condorcet winner Condorcet loser 

Jel Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baigent, N. (1983), Some Reservation on Strictly Majoritarian Social Choice, Discussion Paper Series, University of Essex.Google Scholar
  2. Debord, B. 1987Caractérisation des matrices de préférences nettes et méthodes d’agrégation associéesMathématiques et Sciences Humaines97517Google Scholar
  3. Dodgson, C. (1876), A method of taking votes on more than two issues, in Black, D. (1958), The Theory of Committees and Elections, London: Cambridge University Press.Google Scholar
  4. Fishburn, P. 1977Condorcet social choice functionsSIAM Journal of Applied Mathematics33469489CrossRefGoogle Scholar
  5. Kemeny, J. 1959Mathematics without numbersDaedalus88577591Google Scholar
  6. Klamler, C. 2004The Dodgson ranking and its relation to Kemeny’s method and Slater’s ruleSocial Choice and Welfare2391102CrossRefGoogle Scholar
  7. Klamler, C. 2003A comparison of the Dodgson method and the Copeland ruleEconomics Bulletin417Google Scholar
  8. Laffond, G., Laslier, J. F., Breton, M. 1994The Copeland measure of Condorcet choice functionsDiscrete Applied Mathematics55273279CrossRefGoogle Scholar
  9. Breton, M., Truchon, M. 1997A Borda measure for social choice functionsMathematical Social Sciences34249272Google Scholar
  10. McLean, I. and Hewitt, F. (eds.) (1994), Condorcet: Foundations of Social Choice and Political Theory, Edward Elgar.Google Scholar
  11. Moulin, H. 1988Axioms of Cooperative Decision MakingCambridge University PressNew YorkGoogle Scholar
  12. Nurmi, H. 1999Voting Paradoxes and How to Deal with ThemSpringer-VerlagHeidelbergGoogle Scholar
  13. Ratliff, T. C. 2001A comparison of Dodgson’s method and Kemeny’s ruleSocial Choice and Welfare187990CrossRefGoogle Scholar
  14. Ratliff, T. C. 2002A comparison of Dodgson’s method and the Borda countEconomic Theory20357372CrossRefGoogle Scholar
  15. Saari, D. G. 1995Basic Geometry of VotingSpringer-VerlagBerlinGoogle Scholar
  16. Saari, D. G. 2000aMathematical structure of voting Paradoxes. I. Pairwise VotesEconomic Theory15153CrossRefGoogle Scholar
  17. Saari, D. G. 2000bMathematical structure of voting Paradoxes. II. Positional VotingEconomic Theory1555102CrossRefGoogle Scholar
  18. Young, H. P. 1974An axiomatisation of Borda’s ruleJournal of Economic Theory94352CrossRefGoogle Scholar
  19. Young, H. P. 1988Condorcet’s theory of votingAmerican Political Science Review8212311244Google Scholar
  20. Young, H. P. 1995Optimal voting rulesJournal of Economic Perspectives95164Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of Public EconomicsUniversity of GrazGrazAustria

Personalised recommendations