Advertisement

Theory and Decision

, Volume 60, Issue 2–3, pp 175–191 | Cite as

A Philosophical Foundation of Non-Additive Measure and Probability

  • Sebastian MaaßEmail author
Article

Abstract

In this paper, non-additivity of a set function is interpreted as a method to express relations between sets which are not modeled in a set theoretic way. Drawing upon a concept called “quasi-analysis” of the philosopher Rudolf Carnap, we introduce a transform for sets, functions, and set functions to formalize this idea. Any image-set under this transform can be interpreted as a class of (quasi-)components or (quasi-)properties representing the original set. We show that non-additive set functions can be represented as signed σ-additive measures defined on sets of quasi-components. We then use this interpretation to justify the use of non-additive set functions in various applications like for instance multi criteria decision making and cooperative game theory. Additionally, we show exemplarily by means of independence, conditioning, and products how concepts from classical measure and probability theory can be transfered to the non-additive theory via the transform.

Keywords

conditioning independence Möbius transform non-additive measure products quasi-analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brüning, M. (2003). Products of Monotone Measures, Möbius Transform and k-monotonicity. Dissertation thesis, Universität Bremen.Google Scholar
  2. Carnap, R. 1928Der logische Aufbau der WeltMeinerHamburgGoogle Scholar
  3. Chateauneuf, A., Jaffray, J.-Y. 1989Some characterization of lower probabilities and other monotone capacities through the use of Möbius inversionMathematical Social Sciences17263283CrossRefGoogle Scholar
  4. Choquet, G. 1953–1954Theory of CapacitiesAnnales de l’Institut Fourier5131295Google Scholar
  5. Denneberg, D. (1994, 1997 2nd. ed.), Non-additive Measure and Integral Kluwer, Dordrecht.Google Scholar
  6. Denneberg, D. 1994Conditioning (updating) non-additive measuresAnnals of Operations Research522142CrossRefGoogle Scholar
  7. Denneberg, D. 1997Representation of the Choquet integral with the σ-additive Möbius transformFuzzy Sets and Systems92139156CrossRefGoogle Scholar
  8. Denneberg, D. 2000Totally monotone core an products of monotone measuresInternational Journal of Approximate Reasoning24273281CrossRefGoogle Scholar
  9. Denneberg, D. 2002Conditional expectation for monotone measures, the discrete caseJournal of Mathematical Economics37105121CrossRefGoogle Scholar
  10. Gilboa, I., Schmeidler, D. 1989Maxmin expected utility with non-unique priorJournal of Mathematical Economics18141153CrossRefGoogle Scholar
  11. Gilboa, I., Schmeidler, D. 1995Canonical representation of set functionsMathematics of Operations Research20197212Google Scholar
  12. Grabisch, M. 1995Fuzzy integral in multicriteria decision makingFuzzy Sets and Systems69279298CrossRefGoogle Scholar
  13. Grabisch, M. 1996The application of fuzzy integrals in multicriteria decision makingEuropean Journal of Operational Research89445456CrossRefGoogle Scholar
  14. Hendon, E., Jacobsen, H.J., Sloth, B., Tranæs, T. 1996The product of capacities and belief functionsMathematical Social Sciences3295108CrossRefGoogle Scholar
  15. Koshevoy, G.A. 1998Distributive lattices and products of capacitiesJournal of Mathematical Analysis and Applications219427441CrossRefGoogle Scholar
  16. Marinacci, M. 1996Decomposition and representation of coalitional gamesMathematics of Operations Research2110001015CrossRefGoogle Scholar
  17. Murofushi, T., Sugeno, M. 1989An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measureFuzzy Sets and Systems29201227CrossRefGoogle Scholar
  18. Murofushi, T., Sugeno, M. 1991A theory for fuzzy measures: representations, the Choquet integral, and null setsJournal of Mathematical Analysis and Applications159535549CrossRefGoogle Scholar
  19. Shafer, G. 1976A Mathematical Theory of EvidencePrinceton Univ. PressPrinceton, NJGoogle Scholar
  20. Walley, P., Fine, T.L. 1982Towards a frequentist theory of upper and lower probabilityAnnals of Statistics10741761Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Departement MathematikETH ZürichZürichSwitzerland

Personalised recommendations