Advertisement

Theoretical and Experimental Chemistry

, Volume 55, Issue 5, pp 316–323 | Cite as

Spectral Characteristics of Mechanochemically Prepared Perovskite CH3NH3PbBr3 Nanoparticles Passivated by Amines with Different Alkyl Chain Length

  • N. V. KonoshchukEmail author
  • O. Yu. Posudievsky
  • V. G. Koshechko
  • V. D. Pokhodenko
Article
  • 7 Downloads

We are the first to establish that the introduction of a small amount of passivating amine (Am) during the preparation of CH3NH3PbBr3 (MAPbBr3) (MA/Am = 0.7) leads to the formation of pseudo-2D nanoparticles of this hybrid perovskite, the number of layers in which decreases going from oleylamine to hexylamine. The use of a solution of polystyrene in toluene yields more homogeneous in size stabilized MAPbBr3 nanoparticles and alters the number of layers in them. The resultant MAPbBr3 dispersions and films have strong photoluminescence (PL), whose maximum is shifted toward higher energies in comparison with a powder of this hybrid perovskite due to a quantum size effect. Dispersions and films of MAPbBr3 prepared using oleylamine have the highest PL quantum yield (about 90%) due to the formation of 2D nanoparticles with ≥ 4 layers. An advantage of the MAPbBr3 samples prepared using hexylamine is increased color purity of the PL.

Key words

hybrid halide perovskite passivating amine 2D nanoparticles polystyrene photoluminescence quantum yield 

References

  1. 1.
    H. Wei, Y. Fang, P. Mulligan, et al., Nat. Photonics, 10, 333-339 (2016).CrossRefGoogle Scholar
  2. 2.
    S. A. Veldhuis, P. P. Boix, N. Yantara, et al., Adv. Mater., 28, No. 32, 6804-6834 (2016).CrossRefGoogle Scholar
  3. 3.
    Y. Zhao and K. Zhu, Chem. Soc. Rev., 45, No. 3, 655-689 (2016).CrossRefGoogle Scholar
  4. 4.
    H. Sun, Z. Yang, M. Wei, et al., Adv. Mater., 28, No. 34, 1701153 (1-9) (2017).Google Scholar
  5. 5.
    Y. Hassan, Y. Song, R. D. Pensack, et al., Adv. Mater., 28, No. 3, 566-573 (2016).CrossRefGoogle Scholar
  6. 6.
    E. Mosconi, J. M. Azpiroz, and F. De Angelis, Chem. Mater., 27, No. 13, 4885-4892 (2015).CrossRefGoogle Scholar
  7. 7.
    F. Zhang, H. Zhong, C. Chen, et al., ACS Nano, 9, No. 4, 4533-4542 (2015).CrossRefGoogle Scholar
  8. 8.
    B. Luo, Y.-C. Pu, S. A. Lindley, et al., Angew. Chem. Int. Ed., 55, No. 31, 8864-8868 (2016).CrossRefGoogle Scholar
  9. 9.
    L. C. Schmidt, A. Pertegas, S. Gonzalez-Carrero, et al., J. Am. Chem. Soc., 136, No. 3, 850-853 (2014).CrossRefGoogle Scholar
  10. 10.
    B. Luo, Y.-C. Pu, Y. Yang, et al., J. Phys. Chem. C, 119, No. 47, 26672-26682 (2015).CrossRefGoogle Scholar
  11. 11.
    H. Huang, A. S. Susha, S. V. Kershaw, et al., Adv. Sci., 2, No. 9, 1500194 (2015).CrossRefGoogle Scholar
  12. 12.
    L. Protesescu, S. Yakunin, M. I. Bondarchuk, et al., Nano Lett., 15, No. 6, 3692-3696 (2015).CrossRefGoogle Scholar
  13. 13.
    X. Ji, X. Peng, Q. Wang, et al., Org. Electron., 52, 350-355 (2018).CrossRefGoogle Scholar
  14. 14.
    V. M. Sorokin, N. V. Konoshchuk, D. M. Khmil, et al., Teor. Éksp. Khim., 55, No. 4, 201-209 (2019). [Theor. Exp. Chem., 55, No. 4, 223-231 (2019) (English translation).]Google Scholar
  15. 15.
    A. J. Gordon and R. A. Ford, The Chemist’s Companion, Wiley, New York (1972).Google Scholar
  16. 16.
    Y. Wei, X. Deng, Z. Xie, et al., Adv. Funct. Mater., 27, No. 39, 1703535 (2017).CrossRefGoogle Scholar
  17. 17.
    O. Yu. Posudievsky, N. V. Konoshchuk, A. G. Shkavro, et al., ACS Appl. Nano Mater., 1, No. 8, 4145-4155 (2018).CrossRefGoogle Scholar
  18. 18.
    A. M. Brouwer, Pure Appl. Chem., 83, No. 12, 2213-2228 (2011).CrossRefGoogle Scholar
  19. 19.
    R. E. Kellogg and R. G. Bennett, J. Chem. Phys., 41, No. 10, 3042-3045 (1964).CrossRefGoogle Scholar
  20. 20.
    A. Jana, M. Mittal, A. Singla, and S. Sapra, Chem. Commun., 53, 3046-3049 (2017).CrossRefGoogle Scholar
  21. 21.
    K.-H. Wang, L.-C. Li, M. Shellaiah, and K. W. Sun, Sci. Rep., 7, 13643 (2017).CrossRefGoogle Scholar
  22. 22.
    P. Tyagi, S. M. Arveson, W. A. Tisdale, et al., J. Phys. Chem. Lett., 6, No. 10, 1911-1916 (2015).CrossRefGoogle Scholar
  23. 23.
    X. Kong, K. Zong, and S. S. Lee, Chem. Mater., 31, No. 14, 4953-4970 (2019).CrossRefGoogle Scholar
  24. 24.
    Y. Rakita, N. Kedem, S. Gupta, et al., Cryst. Growth Des., 16, No. 10, 5717-5725 (2016).CrossRefGoogle Scholar
  25. 25.
    G. C. Papavassiliou, G. A. Mousdis, and G. C. Anyfantis, Z. Naturforsch., 65, No. 4, 516-520 (2010).CrossRefGoogle Scholar
  26. 26.
    J. A. Sichert, Y. Tong, N. Mutz, et al., Nano Lett., 15, No. 10, 6521-6527 (2015).CrossRefGoogle Scholar
  27. 27.
    J. Cho, Y.-H. Choi, T. E. O’Loughlin, et al., Chem. Mater., 28, No. 19, 6909-6916 (2016).CrossRefGoogle Scholar
  28. 28.
    V. A. Hintermayr, A. F. Richter, F. Ehrat, et al., Adv. Mater., 28, No. 43, 9478-9485 (2016).CrossRefGoogle Scholar
  29. 29.
    I. Levchuk, P. Herre, M. Brandl, et al., Chem. Commun., 53, 244-247 (2007).CrossRefGoogle Scholar
  30. 30.
    D. Sapori, M. Kepenekian, L. Pedesseau, et al., Nanoscale, 8, No. 12, 6369-6378 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. V. Konoshchuk
    • 1
    Email author
  • O. Yu. Posudievsky
    • 1
  • V. G. Koshechko
    • 1
  • V. D. Pokhodenko
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations