Effect of Modification of Titanium Phosphate by Hydrothermal, Microwave, and Mechanochemical Treatment on the Sorption of Cs, Sr, and U(VI) Ions

  • O. I. Zakutevskyy
  • S. V. KhalameidaEmail author
  • V. V. Sydorchuk
  • T. A. Shaposhnikova

The relationship between the crystal and porous structure of titanium phosphate modified by hydrothermal, microwave, and mechanochemical treatment and its sorption characteristics with respect to Cs, Sr, and U(VI) ions was investigated. It was established that increase of the content of hydrophosphate phase, specific surface area, and volume and size of mesopores increases the sorption capacity and distribution coefficient. It was shown that the sorption is accelerated by increase of the volume of the macropores.

Key words

titanium phosphate mechanochemical, hydrothermal, microwave treatment ion sorption 


  1. 1.
    S. Khalameida, V. Sydorchuk, J. Skubiszewska-Ziêba, et al., J. Therm. Anal. Calorim., 128, 795-806 (2017).CrossRefGoogle Scholar
  2. 2.
    S. Khalameida, R. Nebesnyi, Z. Pikh, et al., React. Kinet. Mech. Catal., 125, 807-825 (2018).CrossRefGoogle Scholar
  3. 3.
    T. S. Psareva, O. I. Zakutevskyy, I. V. Bacherikova, and K. Wieczorek-Ciurowa, Khim., Fiz., Tekhnol. Poverkhn., 14, 371-373 (2008).Google Scholar
  4. 4.
    W. Janusz, S. Khalameida, V. Sydorchuk, et al., Adsorption, 16, 333-341 (2010).CrossRefGoogle Scholar
  5. 5.
    G. O. Zaitseva, V. V. Strelko, and V. I. Yakovlev, Khim., Fiz., Tekhnol. Poverkhn., 9, 156-161 (2003).Google Scholar
  6. 6.
    M. Samsonenko, O. Zakutevskyy, S. Khalameida, et al., Adsorption, 25, 451-457 (2019).CrossRefGoogle Scholar
  7. 7.
    X. Li, Z. Lei, J. Qu, et al., Separat. Sci. Technol., 51, 2772-2779 (2016).CrossRefGoogle Scholar
  8. 8.
    A. P. Krinitsyn, I. Ya. Simanovskaya, and O. L. Strikhar’, Radiokhimiya, 40, 279-288 (1998).Google Scholar
  9. 9.
    O. I. Zakutevskyy, T. S. Psareva, and V. V. Strelko, Zh. Prikl. Khim., 85, 1451-1455 (2012).Google Scholar
  10. 10.
    É. Upor, M. Mokhai, and D. Novak, Photometric Methods of Determination of Traces of Inorganic Substances [in Russian], Mir, Moscow (1985).Google Scholar
  11. 11.
    S. Khalameida, V. Diyuk, A. Zaderko, et al., J. Therm. Anal. Calorim., 131, 2361-2371 (2018).CrossRefGoogle Scholar
  12. 12.
    W. Janusz, S. Khalameida, E. Skwarek, et al., J. Thermal. Anal. Calorim., 135, 2925-2934 (2019).CrossRefGoogle Scholar
  13. 13.
    C. H. Giles, D. Smith, and A. Huitson, J. Colloid Interface Sci., 47, 755-765 (1974).CrossRefGoogle Scholar
  14. 14.
    Y. S. Ho and G. McKay, Adsorpt. Sci. Technol., 20, 797-815 (2002).CrossRefGoogle Scholar
  15. 15.
    F. A. Dawodu, G. K. Akpomie, and I. C. Ogbu, Int. J. Multidisciplin. Sci. Eng., 3, 2045-2051 (2012).Google Scholar
  16. 16.
    S. L. Suib and K. A. Carrado, Inorg. Chem., 24, 200-202 (1985).CrossRefGoogle Scholar
  17. 17.
    C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations, Wiley, New York (1976).Google Scholar
  18. 18.
    D. Alby, C. Charnay, M. Heran, et al., J. Hazard. Mater., 344, 511-530 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. I. Zakutevskyy
    • 1
  • S. V. Khalameida
    • 1
    Email author
  • V. V. Sydorchuk
    • 1
  • T. A. Shaposhnikova
    • 1
  1. 1.Institute of Sorption and Problems of Endoecology, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations