Advertisement

Theoretical and Experimental Chemistry

, Volume 55, Issue 4, pp 266–273 | Cite as

Effect of the Composition of Ethanol–Water Mixtures on the Properties of Oxide (Zn-Zr-Si) and Zeolitic (Ta/SiBEA) Catalysts in the Production of 1,3-Butadiene

  • P. I. KyriienkoEmail author
  • O. V. Larina
  • S. Dzwigaj
  • S. O. Soloviev
  • S. M. Orlyk
Article
  • 19 Downloads

The reasons for the deactivating effect of water on the conversion of ethanol to 1,3-butadiene in the presence of Zn-Zr(La)-Si oxide and Cu(Ag, Zn)/Ta/SiBEA zeolite catalysts are studied. The decrease in the yield of 1,3-butadiene using ethanol–water mixtures of different composition compared with rectified ethanol is due to the deactivating effect of H2O vapor on the Lewis acid sites of the catalyst, at which acetaldehyde undergoes aldol condensation.

Key words

ethanol–water mixture 1,3-butadiene ZnO/ZrO2–SiO2 Ta/SiBEA effect of H2

Notes

The investigations were carried out with partial financial support from research programs of the National Academy of Sciences of Ukraine “Support of priority directions of scientific investigations (KPKVK 6541230)” and “Fundamental problems of creation of new substances and materials of chemical production.”

References

  1. 1.
    E. V. Makshina, M. Dusselier, W. Janssens, et al., Chem. Soc. Rev., 43, 7917-7953 (2014).CrossRefGoogle Scholar
  2. 2.
    G. O. Ezinkwo, V. P. Tretyakov, A. Aliyu, and A. M. Ilolov, ChemBioEng Rev., 1, 194-203 (2014).CrossRefGoogle Scholar
  3. 3.
    C. Angelici, B. M. Weckhuysen, and P. C. A. Bruijnincx, ChemSusChem, 6, 1595-1614 (2013).CrossRefGoogle Scholar
  4. 4.
    G. Pomalaza, M. Capron, V. Ordomsky, and F. Dumeignil, Catalysts, 6, 203 (2016).CrossRefGoogle Scholar
  5. 5.
    R. G. Grim, A. T. To, C. A. Farberow, et al., ACS Catal., 4145-4172 (2019).CrossRefGoogle Scholar
  6. 6.
    D. Cespi, F. Passarini, I. Vassura, and F. Cavani, Green Chem., 18, 1625-1638 (2016).CrossRefGoogle Scholar
  7. 7.
    A. D. Patel, K. Meesters, H. den Uil, et al., Energy Environ. Sci., 5, 8430 (2012).CrossRefGoogle Scholar
  8. 8.
    R. Dastillung, B. Fischer, M. Jacquin, and R. Huyghe, “Method for the production of butadiene from ethanol in one low-water and low-energy-consumption reaction step,” USA Pat. 20170267604 A1, IC C 07 C 2/40, F 28 D 15/02, C 07 C 2/86, B 01 D 11/04, B 01 D 3/14, Publ. Sept. 21, 2017.Google Scholar
  9. 9.
    S. Fan, J. Liu, X. Tang, et al., Chinese J. Chem. Eng., doi:  https://doi.org/10.1016/j.cjche.2018.12.005 (2019).
  10. 10.
    J. Velasquez Ochoa, C. Bandinelli, O. Vozniuk, et al., Green Chem., 18, 1653-1663 (2016).CrossRefGoogle Scholar
  11. 11.
    O. V. Larina, I. M. Remezovskyi, P. I. Kyriienko, et al., React. Kinet. Mech. Catal., 127, 903-915 (2019).CrossRefGoogle Scholar
  12. 12.
    Q. Zhu, B. Wang, and T. Tan, ACS Sustain. Chem. Eng., 5, 722-733 (2016).CrossRefGoogle Scholar
  13. 13.
    G. M. Cabello González, R. Murciano, A. L. Villanueva Perales, et al., Fuel Process.Technol., 193, 263-272 (2019).CrossRefGoogle Scholar
  14. 14.
    M. Zhang, X. Tan, T. Zhang, et al., RSC Adv., 8, 34069-34077 (2018).CrossRefGoogle Scholar
  15. 15.
    M. M. Rahman, S. D. Davidson, J. Sun, and Y. Wang, Top. Catal., 59, 37-45 (2016).CrossRefGoogle Scholar
  16. 16.
    P. I. Kyriienko, O. V. Larina, S. O. Soloviev, et al., Catal. Commun., 77, 123-126 (2016).CrossRefGoogle Scholar
  17. 17.
    P. I. Kyriienko, O. V. Larina, S. O. Soloviev, et al., ACS Sustain. Chem. Eng., 5, 2075-2083 (2017).CrossRefGoogle Scholar
  18. 18.
    O. V. Larina, P. I. Kyriienko, D. Y. Balakin, et al., Catal. Sci. Technol., 9, 3964-3978 (2019). Doi:  https://doi.org/10.1039/C9CY00991D CrossRefGoogle Scholar
  19. 19.
    H. R. Ghorbani, F. P. Mehr, H. Pazoki, and B. M. Rahmani, Orient. J. Chem., 31, 1219-1221 (2015).CrossRefGoogle Scholar
  20. 20.
    X. Qu and D. Jia, J. Cryst. Growth, 311, 1223-1228 (2009).CrossRefGoogle Scholar
  21. 21.
    O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Teor. Éksp. Khim., 52, No. 1, 47-52 (2016). [Theor. Exp. Chem., 52, No. 1, 51-56 (2016) (English translation).]Google Scholar
  22. 22.
    O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Teor. Éksp. Khim., 51, No. 4, 244-249 (2015). [Theor. Exp. Chem., 51, No. 4, 252-256 (2015) (English translation).]Google Scholar
  23. 23.
    Y. Xu, Z. Liu, Z. Han, and M. Zhang, RSC Adv., 7, 7140-7149 (2017).CrossRefGoogle Scholar
  24. 24.
    M. I. Zaki, M. A. Hasan, and L. Pasupulety, Langmuir, 17, 768-774 (2001).CrossRefGoogle Scholar
  25. 25.
    J. Gao and A. V. Teplyakov, J. Catal., 300, 163-173 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. I. Kyriienko
    • 1
    Email author
  • O. V. Larina
    • 1
  • S. Dzwigaj
    • 2
  • S. O. Soloviev
    • 1
  • S. M. Orlyk
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7197, Laboratoire de Réactivité de SurfaceParisFrance

Personalised recommendations